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A tutorial

F
rom the U.S. presi-
dent fist-bumping 
a brain-controlled 

robotic arm to monkeys 
playing brain-controlled 

Pong, the past few years have had a 
surge of neural interfaces in the news. 
Neural interfaces, which are used in 
brain–machine interface (BMI) and 
neurostimulation technologies, often 
conjure images of mind-controlled 
cyborgs and mind uploading. In reality, 
they offer incredible hope for patients 
with intractable neurological conditions. 

For example, just nine years ago came 
the first demonstration of a woman 
with tetraplegia (paralysis from the 
chest down) controlling a robotic pros-
thetic arm through electrical signals 
recorded directly from her brain, spe-
cifically, the motor cortex, which con-
trols movement [1]. For 15 years, she 
had been unable to perform basic 
daily tasks, such as eating and drink-
ing on her own, but with a BMI, she 
demonstrated the ability to pick up a 
cup of coffee and take a sip.

This was an incredible scientific 
achievement, and it resulted in multi-
ple ongoing clinical trials around the 
world, yet there remain challenges to 

the practical translation of this tech-
nology to patients. The device that 
connects to a patient’s brain pierces 
her cortex, tunnels wires through her 
skull, and tethers her to a computer 
[Figure 1(a)]. A smaller, fully implant-
able, and wireless interface would 
ease chronic use and significantly 
reduce the risk of infection. During 
the past decade, significant advances 
have been made toward this goal, 
with numerous opportunities for devel-
opment ahead.

Neuromodulation technologies are 
another type of neurotechnology that 
stimulates the brain, spinal cord, and 
peripheral nerves to modulate neural 
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activity and treat the symptoms of 
advanced neurological disorders. 
For example, deep brain stimulation 
devices [Figure 1(a)] provide electrical 
stimulation to regulate dysfunctional 
neural circuits, much like a pacemaker 
for the brain, and are used to treat 
Parkinson’s disease, dystonia, and 
more [2]. The devices consist of very 
long electrodes that are implanted 
in deep brain structures and a pulse 
generator that is implanted in the 
chest cavity and transmits waves of 
voltage or current to targeted brain 
regions. Similarly, peripheral nerve 
stimulators are used to regulate phys-
iological functions, from modulating 
blood pressure [3] to easing inflam-
mation in rheumatoid arthritis [4]. 
Neural stimulation can also be used 
to provide sensorimotor feedback to 
BMIs, enabling tactile and propriocep-
tive reactions [5]. These technologies 
significantly impact the quality of life 
for many patients, but there remain 
numerous opportunities for improve-
ment in miniaturization, intelligence, 
and the invasiveness of implantation.

Implantable neural interfaces are 
medical devices that require U.S. Food 

and Drug Administration approval, and 
they are designed by interdisciplinary 
teams that, importantly, include biolo-
gists and clinicians. Patient safety and 
the invasiveness of implantation are of 
paramount concern, making implant 
volume and power dissipation key 
to designs. Wireless ICs have paved 
a path toward fully implantable and 
minimally invasive neural interfacing. 
The black elements in Figure 1(b) are 
the components required for a bidi-
rectional (recording and stimulating), 
wireless neural interface. A power 
source, typically in the form of a bat-
tery, antenna, or energy harvesting 
element, is used to power the implant. 
Wireless data transmission eliminates 
cables, enabling surgeons to close 
implant incisions, greatly reducing 
infection risk. Mixed-signal recording 
circuits amplify and digitize neural 

signals from the electrodes, while stim-
ulator circuits and a controller pro-
vide the needed voltage or current to 
excite the neural tissue. In a closed-
loop device, integrated edge compute 
and machine learning [Figure 1(b), in 
gray] can reduce the wireless burden 
by enabling devices to make decisions 
in situ and with low latencies. These 
building blocks are common across 
many types of BMIs and neurostimu-
lation implants, and the past decade 
has included significant advances in 
the design of all these components.

There are three major trends driv-
ing current technological progress 
in neural interfaces, including the 
following:
1) sensor–IC integration for scaling 

the number of electrodes
2) closing the loop
3) miniaturizing wireless implants.
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FIGURE 1: (a) Two clinical neural interfaces: a percutaneous neural recording implant similar to [1], and a deep brain stimulator. (b) Compo-
nents for an implantable bidirectional (black) or closed-loop (black and gray) wireless neural interface. (c) Example neural interface elec-
trodes. [From left to right (adapted from Utah microelectrode array [6], SENSIGHT by Medtronic [7], ultrathin polymer threads by Neuralink 
[8], high-density neural matrix [9], Stentrode by Synchron [10] and ultraflexible syringe-injectable mesh [11]).] LNA: low-noise amplifier; ADC: 
analog-to-digital converter; Tx: transmitter; ML: machine learning; DAC: digital-to-analog converter; Rx: receiver. 

Peripheral nerve stimulators are used 
to regulate physiological functions, from 
modulating blood pressure to easing 
inflammation in rheumatoid arthritis.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 23,2021 at 00:51:56 UTC from IEEE Xplore.  Restrictions apply. 



90 FALL 2021 IEEE SOLID-STATE CIRCUITS MAGAZINE 

Scale
The human brain has roughly 86 bil-
lion neurons. How many we need to 
record from remains an open ques-
tion with an application-dependent 
answer. Since we are still very much 
in an era of discovery of how the 
human brain functions and stores 
and processes data, the general trend 
has been to record from as many 
neurons as possible by scaling the 
recording devices’ channel counts. 
Sensor–IC integration has been one of 
the major driving advances in scale. 
The development of the Utah Array 
(Figure 1) [6], a microfabricated poly-
silicon electrode array, enabled neu-
ral recording from 100 electrodes at 
a 400-µm pitch. Designers recognized 
an opportunity to improve the inter-
face by designing an IC to record from 
the array and transmit data wirelessly, 
freeing the subject from cumbersome 
cabling and instrumentation [14].

The current state of the art has 
scaled to thousands of channels, with 
examples provided in Figure 2. Neu-
ralink’s 1,024-channel recording and 
stimulation chip connects to flex-
ible, thread-like electrodes through 
feedthroughs in a custom hermetic 
package [8]. IMEC’s Neuropixels 2.0 
probe [12] integrates 5,120 electrodes 

directly over circuitry in a long shank 
structure that is etched directly from 
a CMOS substrate. Paradromics’s Argo 
system [13] has more than 65,000 flex-
ible wire electrodes bonded to a 256 
× 256 amplifier array (Figure 2). High 
channel counts necessitate local data 
compression [8], wired connections 
[12], [13], and edge computing to man-
age data rate demands. The design 
of recording circuits to manage the 
power and data demands of scale have 
been the subject of numerous review 
articles and tutorials [15]–[17].

Closing the Loop
Closed-loop neural interfaces build on 
BMI and neuromodulation technologies 
to measure neural signals, decode the 
signals through advanced algorithms, 
and stimulate to affect a therapeutic 
intervention and provide sensory feed-
back. As an example, traditional neuro-
modulation devices run open loop and 
are programmed by neurologists who 
tune patient-specific parameters based 
on heuristic assessments of therapeu-
tic effects [18]. The process can take 
months and sometimes years. Open-
loop devices also stimulate far more 
than required, draining device batter-
ies and potentially causing unwanted 
side effects. Closing the loop to auto-

mate the optimization of stimulation 
patterns has the potential to enable 
faster and better outcomes for patients 
while reducing costs and improving 
accessibility [19].

A major area of progress is the 
development of closed-loop systems 
on chip that integrate machine learn-
ing with stimulation and recording 
circuits [Figure 1(b)] [20]. Low-power 
and low-latency classification of neu-
ral signals on-chip can enable smart 
and miniaturized devices, and new 
techniques are being developed for 
a multitude of applications to enable 
online learning and unsupervised 
approaches for on-chip classification 
of neural signals [19], [21].

Miniaturization
There has been significant effort 
to make devices that are extremely 
miniaturized, flexible, less invasive 
to implant, and more biocompatible. 
Histological studies during the past 
decade have shown that large rigid 
structures in the brain cause glial cells 
[22], which perform maintenance func-
tions in the brain, to coat the foreign 
bodies, form scar tissue, and insulate 
the electrodes, reducing the amplitude 
and bandwidth of the neural signal. 
Current literature suggests that to 
avoid cell damage entirely, electrodes 
should be the same order of magni-
tude as the diameter of a neuron.

The quest for brain-compatible elec-
trodes has created an entire branch of 
material science dedicated to the fab-
rication of thin, flexible electrodes, 
such as ultrathin polymer threads [8] 
and conformable thin films [9]. Elec-
trodes that do not require surgical 
implantation, such as syringe-inserted 
foldable meshes [11] and stents placed 
through the vasculature [10], also offer 
significant advantages in invasive-
ness and patient safety. Of course, to 
implant an entire device in this mini-
mally invasive manner, the electron-
ics must fit within the dimensions 
of syringes and stents, requiring the 
entire chip, power source, assembly, 
interconnect, and encapsulation to 
have dimensions on the scale of 2 mm 
or less.

Neuralink IMEC Neuropixels 2.0 Paradromics Argo
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FIGURE 2: Examples of high-channel-count neural interfaces. [From left to right (adapted 
from Neuralink [8], Neuropixels 2.0 by IMEC [12] and Argo by Paradromics [13]).] 

Patient safety and the invasiveness of 
implantation are of paramount concern,  
making implant volume and power  
dissipation key to designs.
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Recent wireless implants have 
scaled to the millimeter and even 
submillimeter scale to record and 
stimulate brain and peripheral nerve 
activity. Since batteries do not pro-
vide sufficient energy at such scales 
and periodically need to be surgically 
replaced, researchers have investi-
gated a multitude of approaches for 
wirelessly delivering power to and 
communicating with miniaturized 
devices (Figure 3). Common wireless 
powering modalities utilize electro-
magnetic [23]–[25], acoustic [26], [27] 
and optical sources [28]. To understand 
some of the limitations on how small 
such neural interfaces can get, the 
remainder of this article consists of a 
tutorial that focuses on specific design 
considerations for an ultrasonically 
powered implantable neurostimulator.

Neurostimulation
To begin to understand how these 
devices work, we must start at the level 
of a single neuron (Figure 4). Relative 
to extracellular fluid, neurons have 
a negative resting voltage across 
their membrane. They receive input 
signals from many neurons that tem-
porarily raise or lower this mem-
brane potential until a threshold is 
exceeded and causes them to fire an 
action potential. The action potential 
propagates down the cell and is part 
of the signal cascade that is an input 

to the next cell. It also releases ions 
into the extracellular fluid that are 
measurable by nearby electrodes.

Just as neurons communicate with 
one another through electrical action 
potentials and the polarization of cell 
membranes, electrical stimulation is 
a way to “write in” or communicate 
with the brain. The cell membrane of 
a neuron can be modeled as a capaci-
tance, and the application of a charge 
from an external source can initiate 
the same processes as other natural 
inputs. Neurostimulation devices send 
patterned pulses of current through 
electrodes that can either excite neu-
rons to fire or inhibit firing. There are 
other emerging methods to modulate 
brain activity that may provide more 

cell-specific activation. These include 
optogenetics for excitation using light 
[29], the use of focused ultrasound waves 
[30], drug delivery directly in the cortex 
[31], and the use of magnetic fields [32].

Ideally, electrodes make low-imped-
ance contact with tissue, but as our 
devices get smaller and electrode dimen-
sions shrink, impedances rise and 
can greatly influence how we design 
circuits to interface with them. It is 
therefore extremely important to have 
a good impedance model of the elec-
trode–tissue interface, which can be 
modeled with the lumped element 
circuit model in Figure 5. When the 
electrode is brought in contact with 
an ionic solution, charged particles 
that are dissolved in the liquid are 
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FIGURE 3: Examples of recent miniaturized wireless neural implants. [From left to right (adapted from Neurograin [23], Microbead [24], 
MagNI [25], Neural Dust [26], ultrasonically-powered nerve stimulator implant [27] and MOTE [28]).] MagNI: magnetoelectric neural implant; 
TbioCAS: IEEE Transactions on Biomedical Circuits and Systems; MOTE: microscale opto-electronically transduced electrode.
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FIGURE 4: An example neuron cell and its action potential, demonstrating the flow of neu-
ral information and the origin of electrical neural signals.
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attracted to the metal charges and 
form a double layer. This layer of charged 
particles, whose average distance from 
the metal lies on the Helmholtz plane, 
essentially forms a capacitance (CDL) 
between the electrode and tissue. 
Alternatively, a constant phase ele-
ment, which captures the imperfec-
tions of the double layer capacitance, 
can provide a more accurate model of 
the impedance.

There is also a parallel charge trans-
fer resistance RCT in the model that 
accounts for reactions and exchange 
currents that result at the interface. 
Both CDL and RCT are electrode material 
dependent and scale with the effective 
surface area of the electrode, with the 
capacitance increasing and the resis-
tance decreasing. Exemplary values 
for various materials can be found in 
[33]. The best electrode metals will be 
inert, low impedance, and biocompat-
ible and have high charge delivery 
capacity; they include platinum, plati-
num alloys, and iridium oxide [34]. 

Here, RS, which is in series with the 
other elements, is the resistance of 
the tissue itself and dependent only 
on electrode geometric dimensions 
and the resistivity of the tissue. A 
round, flat electrode with radius  a  has 
a spread resistance of

R a4S
t

= ,

where t  is the tissue resistivity. Any 
interconnect between the stimulator 
and the electrode may be modeled 
in series with RS.

Figure 6 illustrates some common 
monophasic [Figure 6(a)] and biphasic 
[Figure 6(b)] stimulation waveforms. 
While voltages can be used, current 
provides a more controlled charge 
delivery since it is agnostic to electrode 
and tissue impedance fluctuations. 
Monophasic cathodic pulses are highly 
efficacious but leave residual charge 
at the electrode interface, potentially 
inducing corrosion and neural tissue 
damage. A passive recharge phase 

may be added after each pulse to short 
the stimulation electrodes and clear 
built-up charge; however, this can 
induce large current spikes. Biphasic 
stimulation, consisting of a cathodic 
pulse followed by an anodic pulse 
in the opposite direction, is used to 
limit the peak reverse current and 
promote balance in the total amount 
of charge delivered. The current 
amplitude, pulsewidth, period, and 
interphase gap (which improves 
efficacy) are tuned on a patient-spe-
cific basis.

When stimulating nervous tissue, 
the most important consideration is 
patient safety. The Shannon criteria 
[35] constitute an empirical rule for 
evaluating the possibility of dam-
age to nervous tissue and relate the 
maximum charge density per phase 
(Q/A) to the maximum charge per 
phase (Q ) with a dimensionless con-
stant k :

( ) .log logA Q
Q

k= -c m
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FIGURE 5: Circuit models of (a) the electrode–tissue interface using (b) the capacitance (CDL) and a constant phase element (CPEDL).
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FIGURE 6: (a) A monophasic stimulation pulse train. (b) A biphasic stimulation pulse train with an interphase gap.
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Intuitively, both the charge density 
and charge per phase should play 
important roles in safety. Charge 
density captures the notion that 
passing the same amount of cur-
rent through a larger-surface-area 
electrode should be safer and that 
the total amount of charge that is 
delivered should also be limited, 
independent of the electrode size. 
Shannon observed that experiments 
where k  exceeded 1.85 resulted in 
tissue damage, leading to the use of 
this value as an absolute maximum. 
Clinical deep brain stimulators 

observe a maximum charge den-
sity of 30 µC/cm2, a limit derived 
from a more conservative k  value 
of 1.75. While the Shannon criteria 
are widely used for stimulation in 
the central and peripheral nervous 
systems, a more comprehensive  
set of safety metrics would capture 
the effects of frequency, the duty 
cycle, and the duration of exposure 
and would be extended to small-
area microelectrodes (<30 µm in 
diameter) [34].

Figure 7(a) reveals the boundary 
between safe and unsafe stimulation 

at   .k 1 85= . The relationship between 
the charge and charge density at the 
limit is defined by the electrode area, 
with an exemplary 1-mm diameter 
electrode having a limit of less than 
1 µC/phase. This safe stimulation 
boundary can be translated into a 
relationship between the stimulation 
current amplitude and pulsewidth, 
whose product defines the charge in 
each phase [Figure 7(b)]. Figure 7(c) 
illustrates one commonly used stimu-
lator topology, the push–pull stimula-
tor, connected to the electrode model. 
It provides a negative current in one 
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phase with total charge QC  and a 
positive current in another phase 
with total charge QA , and it shorts 
the electrodes in a third phase. For a 
given stimulation current and dura-
tion, the model can be used to cal-
culate the voltage drop measured 
across the electrode Vstim.

The compliance voltage (VC), or the 
output voltage range of the stimulator, 
must be designed to handle these volt-
age swings, which can be very high and 
are often the limiting factor for deter-
mining the supply voltage [Figure 7(b)]. 
In the power-constrained environment 
of an implant, it is important to opti-
mize the overall system efficiency from 
the power source to the stimulation 
output power:

,P
P

in

stimh =

where P V I T2stim stim stim stim# # # #=

.fstim  To maximize efficiency, it is 
advantageous to use the lowest 
VDDH/VDDL that meets the require-
ments and can be calculated using the 
techniques described in this tutorial.

Miniaturizing an Implantable  
Wireless Neurostimulator
Electromagnetic power coupling is 
the most common form of wireless 
power delivery. It is commercially used 
in devices such as cochlear implants 

and peripheral nerve stimulators 
and has been extensively proposed for 
powering neural implants. In the past 
few years, ultrasound has emerged 
as a viable modality for powering 
and communicating with implants 
[26], [36]–[38]. An implant utilizes a 
small ultrasound transducer that con-
verts ultrasound-induced mechanical 
vibrations to electrical energy. Other 
forms of wireless energizing include 
optical and infrared powering [28] 
and magnetoelectric power trans-
fer [25], [39]. Under the right set of 
circumstances, all these techniques 
enable devices to shrink to the mil-
limeter scale. Radio frequency and 
ultrasound, however, have been dem-
onstrated to provide simultaneous 
power and bidirectional communi-
cation across a single wireless link. 
This means the number of antennas 
or transducers on an implant can be 
reduced to one, resulting in the most 
volume-efficient designs.

Well-characterized on-chip induc-
tors with moderate quality factors 
are widely integrated on silicon and 
greatly simplify the assembly of elec-
tromagnetically powered implants 
[24]. Since the dimensions of on-chip 
antennas are proportional to the 
wavelength, implementing millime-
ter-scale electromagnetic resonators 
requires operating at a relatively 

high frequency, e.g., >1 GHz, set-
ting strict limits on the transmitted 
power and implant depth due to con-
siderable tissue absorption. In con-
trast, the speed of sound in tissue 
is almost five orders of magnitude 
slower than that of electromagnetic 
waves, and therefore millimeter-scale 
acoustic resonators can be designed 
to operate at considerably lower fre-
quencies, e.g., in the megahertz range. 
Since the acoustic attenuation coeffi-
cient is <3 dB/(cm · MHz) for most soft 
tissues [40], acoustic waves with mil-
limeter-scale wavelengths propagate 
more efficiently than electromagnetic 
waves (e.g., up to 9 dB/cm at 1 GHz for 
muscle [41]). This enables safe power 
delivery to deep anatomical areas, e.g., 
most peripheral nerves. While the 
skull distorts and attenuates the inci-
dent ultrasound wave pattern, power 
can be delivered to implants in the 
brain through thinned skull [42], [43].

Piezoceramic transducers (piezos) 
are used to harvest power from ultra-
sound pressure waves. Since the over-
all volume of ultrasonic implants is 
dominated by a piezo, it is helpful to 
investigate the minimum piezo volume 
for a given application. We present a 
design methodology for minimiz-
ing the piezo volume [44] that is suit-
able for deep-tissue neurostimulators 
that can be used for either peripheral 
nerve or brain tissue stimulation. The 
ultrasonic power harvesting system 
of the stimulator can be modeled by 
the simplified circuit in Figure 8. The 
stimulator is represented by an ideal 
rectifier and a load current sink that 
requires a minimum voltage headroom 
of VL to model the power consump-
tion constraints. The power source is 
a resonating piezo (actuated by inci-
dent ultrasound waves launched by an 
external transducer) that is modeled 
by its Thevenin equivalent circuit at 
resonance. The piezo is actuated by 
the local acoustic intensity, which is 
regulated to a maximum of 7,200 W/m2 
for diagnostic ultrasound [45].

The local ultrasound intensity is 
a complex function of the operation 
depth, acoustic properties (the density 
and speed of sound) of the medium, 
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FIGURE 8: The generic ultrasonic implant model.

Researchers have investigated a multitude of 
approaches for wirelessly delivering power to 
and communicating with miniaturized devices.
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and type and geometry of the external 
transducer. We assume that maximum 
acoustic intensity is locally available at 
the depth of interest, which is a valid 
supposition for focused external trans-
ducers, e.g., spherical, whose intensity 
profiles have maxima at their designed 
focal points. In reality, the intensity 
in all tissue areas must not exceed 
7,200 W/m2, and ensuring so requires 
careful modeling of the external trans-
ducer and entire channel, which is 
beyond the scope of this tutorial.

As shown in Figure 8, the design 
constraints are VL and IL, and the 
design space is the geometry (the 
aspect ratio and thickness) of the 
piezo. For neural stimulation, we tar-
get an average current consumption 
of 100 An  and a minimum rectified 
voltage VL of 2.5 V. These numbers 

are consistent with those used in pre-
viously reported neuromodulating 
implants in the peripheral nervous 
system [27], [46] and brain [47] that 
have been experimentally shown to 
invoke neural activity in vivo.

The design process begins by char-
acterizing the implant piezo, namely, 
VTh and RTh, at the resonant frequency. 
A bulk piezo with a moderate aspect 
ratio (aspect ratio = width/thickness), 
used in most ultrasonic implants, 
mechanically resonates along its 
major dimension [48]. There are two 
fundamental resonant frequencies, 
that is, series and parallel. At either, 
the reactive components of the piezo 
electrical impedance cancel out, leav-
ing only a resistance that is modeled 
by RTh. The piezo model is completed 
with the open-circuit ac voltage source 

VTh. Finite element solvers are used to 
find the electrical impedance of the 
piezo, resonance frequencies, RTh, 
and VTh for various aspect ratios and 
thicknesses. Solving 3D finite-element 
models provides a more accurate esti-
mate of these parameters compared 
to available closed-form 1D analyti-
cal expressions, especially for aspect 
ratios of around one, when there is 
considerable coupling between dif-
ferent resonant modes that is not 
easily described with a single set of 
equations. The simulated parameters 
are then stored in look-up tables and 
used throughout the design process. 
For a lead–zirconate–titanate (PZT-
5H) piezo with an aspect ratio of one, 
these parameters are given in Fig-
ure 9(a) and (b). At resonance, VTh lin-
early scales with the piezo thickness, 
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while RTh is independent of thick-
ness and is only a decaying function 
of the aspect ratio. With a known RTh 
and VTh for a given geometry (the 
thickness and aspect ratio), the maxi-
mum available power per piezo vol-
ume can be calculated. For a PZT-5H 
piezo with an aspect ratio of one, 
this is provided in Figure 9(c) at the 
series resonance frequency.

To harvest the maximum power, 
the input impedance of the chip Rin 
should be matched to the piezo resis-
tance RTh, and any mismatch will 
decrease the delivered power. The 
following equation, derived from the 
conservation of energy, can be used 
to approximate the delivered power 
to the load:

.I R
V

V
V

V
V2 1 1 2 asinL

Th

Th

Th

L

Th

L.
r r

- -c c cm mm

For a known load voltage, 2.5 V, the 
preceding expression can be numeri-
cally solved for IL and different com-
binations of VTh and RTh that are 
ultimately mapped to different geom-
etries and volumes using the look-up 
tables. Any geometry that provides 
I A100 L $ n  is a solution. The same 
process can be repeated for other 
aspect ratios at both series and parallel 
resonant frequencies. A summary of 
acceptable geometries is in Figure 9(d) 
for the neural stimulating implant con-
straints outlined earlier. Interestingly, 
we find that decreasing the aspect 
ratio of the piezo roughly maintains 
the delivered power while decreasing 
the volume. The smallest piezo volume 
that delivers 250 nW of power while the 
rectifier maintains .V 2 5 L $  V is found 
to be 0.013 mm3 for a piezo with an 
aspect ratio of 1/4. This is an order of 
magnitude smaller than the piezo used 
in our prior art [46].

In [46], a margin of error was 
included to account for nonidealities 

caused by encapsulation, misalign-
ment, and tissue  inhomogeneity. 
Improved encapsulation and tissue 
modeling and a lower aspect ratio 
would enable the use of a signifi-
cantly smaller piezo. Moreover, scal-
ing the piezo size to that of a neuron 
[Figure 9(c)] could potentially harvest 
nonnegligible amounts of energy 
(~  1 nW), enough to power a sensor. 
At these scales, other elements, such 
as the IC and interconnect, would 
likely dominate the volume, but this 
demonstrates that there is significant 
room for innovation and advancing 
the state of the art for miniaturizing 
wireless neural implants.

Summary
This tutorial covered the background 
of and major trends in neural inter-
face technologies that are used in 
BMIs and neuromodulation devices. 
We presented methodologies to ensure 
safe and efficient neurostimulation 
and optimize the volume of a wireless 
ultrasonic neuromodulating implant. 
So many different parts must come 
together in the realization of a neu-
ral interface that no single tutorial 
can cover all aspects; in fact, we have 
only scratched the surface. There are 
numerous other areas where circuit 
designers can contribute and signifi-
cantly advance the state of the art, 
including machine learning for clos-
ing the loop; communication; net-
working and security for implanted 
devices; strategies, such as beam-
forming techniques for coping with 
misalignment and implant migration; 
packaging; and more. There are also 
emerging sensing and stimulation 
techniques beyond voltage record-
ing and charge-based stimulation 
and numerous highly impactful evol-
vin applications that will guide the 
design of future devices to improve 

our understanding of the brain, treat 
neurological conditions, and improve 
the human condition.
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