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Abstract: 

Wireless, neural wearables can enable life-saving drowsiness, cognitive, and health monitoring for heavy 
machinery operators, pilots, and drivers. While existing systems use in-cabin sensors to alert operators 
before accidents, wearables may enable monitoring across many user environments. Current neural 
wearables are promising but limited by consumable electrodes and bulky, wired electronics. To improve 
neural wearable usability, scalability, and enable discreet use in daily and itinerant environments, this 
work showcases an end-to-end system for the first wireless, in-ear, dry-electrode earpiece for 
monitoring drowsiness. The proposed platform integrates additive manufacturing processes for gold-
plated dry electrodes, user-generic earpiece designs, wireless electronics, and low-complexity machine 
learning algorithms. To evaluate the platform, thirty-five hours of ExG data were recorded across nine 
subjects performing repetitive drowsiness-inducing tasks. The data was used to train three, offline 
classifier models (logistic regression, support vector machine, and random forest) and evaluated with 
three training regimes (user-specific, leave-one-trial-out, and leave-one-user-out). The support vector 
machine classifier achieved an average accuracy of 93.2% while evaluating users it has seen before and 
93.3% when evaluating a never-before-seen user. These results demonstrate for the first time that dry, 
3D printed, user-generic electrodes can be used with wireless electronics to rapidly prototype wearable 
systems, which achieve comparable average accuracy (>90%) to existing state-of-the-art in-ear and scalp 
ExG systems that utilize wet electrodes and wired, benchtop electronics. Further, this work 
demonstrates the feasibility of using population-trained machine learning models in future, wearable 
ear ExG applications focused on cognitive health and wellness tracking.  

 

 

  



   
 

   
 

I. Introduction: 

Drowsy driving and fatigue while operating heavy machinery can be life-threatening. It is estimated 
that over 16.5% of fatal vehicle accidents in the United States include a drowsy driver resulting in over 
8,000 deaths and $109 billion in damages [1], [2], [3]. In addition to private and commercial (trucking) 
accidents, the National Safety Council has also cited drowsiness as the most critical hazard in 
construction and mining. While these deaths may be prevented with common risk assessments, fatigued 
individuals are often unable to recognize the full extent of their impairment before it is too late [4]. 
Drowsiness monitoring solutions use camera-based eye-tracking, steering trajectory sensors, or 
electrophysiological recording devices [5], [6], [7]. While they can be a good fit in automotive scenarios, 
eye tracking is obscured by sunglasses and other obstructions while steering sensors can be susceptible 
to false alarms on rough roads. User-centered recording modalities such as body-worn cameras, 
photoplethysmography (PPG), electrodermal activity (EDA), electrocardiography (ECG), 
electrooculography (EOG), and electroencephalography (EEG) are becoming increasingly popular 
because they are highly portable and adaptable to professional work environments [8], [9], [10], [11]. 
These modalities have been incorporated into multiple different form-factors such as eye-tracking 
glasses [12], PPG/ExG tracking helmets [7], and in-ear ExG sensors [13], [14]. Of these methods, ExG 
generally achieves the highest drowsiness detection accuracies [15]. 

Surface EEG is a safe, non-invasive method of monitoring the brain’s electrical activity from the 
scalp. Clinically, the most prevalent use of EEG is the monitoring and diagnosis of stereotyped 
neurological disorders related to sleep and epilepsy. These clinical systems generally use large, scalp-
based, gold (Au) and silver/silver chloride (Ag/AgCl) electrode arrays [16], [17], [18]. Au forms a 
capacitive interface due to its inert nature, while Ag/AgCl forms a faradaic interface between the Ag and 
skin. The AgCl is a slightly soluble salt that quickly saturates the skin and forms a stable electrode-skin 
interface. To maintain a low-impedance electrode-skin interface, contact is improved with skin 
preparation and multiple technicians. While suitable for occasional, short-term monitoring, existing wet 
electrode arrays tend to be large and delicate for everyday use. Additionally, prolonged use of devices 
that require skin abrasion can result in skin irritation and lesions, further limiting their long-term use 
[19], [20]. To promote use outside the lab and simplify clinical measurements, recent wearable EEG 
monitoring systems have focused on using smaller form-factor wet electrode arrays (e.g. cEEGgrid) [21] 
and dry electrodes that eliminate the use of hydrogels, integrating electronics and electrodes into a 
headset form factor, and software packages that allow for use in more everyday applications. The 
improved wet electrode systems (e.g. the cEEG grid) can provide unobtrusive EEG monitoring for 7+ 
hours, but still requires hydrogel application (limiting day-to-day use). Dry electrode systems for 
research (e.g. CGX systems and Emotiv), commercial (e.g. Muse headband and Neurosity), and hobbyist 
(e.g. OpenBCI and Brainbit) have similarly demonstrated impressive EEG recordings of spontaneous and 
evoked neural signals and enabled disease monitoring, brain-computer interfaces (BCIs) and meditation 
guidance. As these commercial systems’ popularity increases, more and more wireless EEG systems are 
being developed and deployed across different environments [22], [23], [24], [25]. The least 
cumbersome systems employ dry electrodes that minimize set-up time but generally still require skin 
cleaning and electrode surface treatments. Furthermore, the associated software packages require 
training to use [23], [24]. Lastly, headset electronics are better suited for research and clinical 
environments as opposed to public, everyday use.  



   
 

   
 

Discreet, multi-channel EEG recordings from inside the ear canal have been demonstrated [26], 
[27], [28] with recent advancements focusing on earpiece design, electrode materials, and multi-sensor 
arrays. The ear canal is an ideal sensor location due to its inherent mechanical stability and wealth of 
potential recording modalities. In-ear sensors and electrodes are well situated to record temporal lobe 
activity, blood oxygen saturation, head movement, and masseter muscle activity making it ideal for 
multi-modal sensing if high spatial coverage is not required [29], [30]. While some applications may treat 
muscle activity or ear canal deformation as interference signals, these signals can be useful for other 
general ExG workloads. It is also important to note that in and around-the-ear EEG is inherently limited 
in gathering spatially encoded brain-activity relative to broader scalp arrays [27], [31]. Many successful 
designs have leveraged hydrogel coated on flex-pcb arrays or user-customized earpieces to record ExG 
features such as EOG, low-frequency EEG (1 – 30 Hz), and evoked potentials (40 – 80 Hz) [26], [27], [28], 
[32], [33]. These wet-electrode based, custom earpiece systems established the feasibility of in-ear 
monitoring for attention monitoring, seizure monitoring, whole night sleep monitoring, and sleep stage 
classification [34], [35], [36], [37]. Due to their user customized approach, earpieces require a case-by-
case integration schemes to minimize earpiece volume resulting in variable electrode positioning. The 
required skin-preparation and hydrogel also can lead the conductive bridging between electrodes, limit-
user-comfort, and reduced electrode lifetime [38]. The next step to more scalable deployment of in-ear 
ExG recordings would be the utilization of one-size-fits-most (user-generic) earpiece designs, dry 
electrodes, wireless electronics, and electrode materials that do not require maintenance.  

Recent user-generic earpieces equipped with wet electrodes, dry electrodes [39], [40], [41], 
[42], PPG, and/or chemical sensors have achieved high degrees of accuracy for brain-state and activity 
classification [39], [40], [43], [44], [45], [46]. Additionally, dry-electrode based in-ear ExG have recorded 
low frequency neural rhythms, evoked potentials, and EOG comparable to wet-electrode. While 
potentially more susceptible to noise due to higher electrode-skin impedance (ESI) interfaces [47], dry 
electrodes eliminate the use of hydrogel, simplify the earpiece application process, and can improve 
user comfort. To achieve a middle ground between comfort and low ESI, state-of-the-art dry electrodes 
employ a wide range of solutions ranging from exotic materials, conductive composites, capacitive 
interfaces, solid-gels, and high-surface area 3D electrodes (microneedles, fingers, and nanowires) [20], 
[40], [41], [48], [49], [50], [51], [52], [53], [54], [55], [56]. PEDOT:PSS and IrO3 are commonly used in the 
small-scale production of rigid electrodes due to their superior conductivity and faradaic interfaces [57], 
[58], [59]. Both materials promote charge transfer by leveraging doped surfaces and high effective 
surface areas. Conductive, flexible composites, such as silvered-glass silicone and carbon-infused 
silicone, are not as conductive as PEDOT:PSS and IrO3 but offer significantly greater comfort. Conductive 
composites are made from polymers or elastomers that can be molded into arbitrary shapes for 
anatomically fit electrodes and use added conductive particles to achieve a desirable ESI. The more 
conductive particles that are added will ultimately limit polymer cross-linking and may lead to cracking 
over time [60]. The clinical and industry standard materials are silver/silver chloride (Ag/AgCl) and gold 
due to their cost, biocompatibility, and electrical properties. Ag/AgCl can be painted on 3D electrodes to 
form consistent, faradaic, low-impedance interface through hair and grime. Furthermore, Ag/AgCl is also 
popular for consumable electrodes since the conductive particles deplete over time [61]. Gold 
electrodes are more inert, can be repeatedly reused, and form a capacitive interface that is not reliant 
on added conductive ions. While potentially more susceptible to motion artifacts and interference, 
gold’s lifetime and chemical properties make it ideal for long-lasting ExG recording systems. Most 
commercial wearables and existing in-ear ExG systems use Ag/AgCl, Au, or conductive composite 



   
 

   
 

electrodes has made it the choice material for electrophysiological recording hardware and commercial 
wearables [24], [62], [63], [64]. 

 Electrodes are just one piece of signal acquisition. Neural recording hardware is required to 
digitize neural signals and transmit them to a processing unit/base-station for offline processing. Neural 
recording hardware for more consumer-facing products tend to be tailor-made with low bandwidth, 
noise, and power specifications [65], [66], [67]. These devices tend to have bandwidths around 100 Hz 
and can achieve ultra-lower power operation (<100 µW [67]). Research focused devices, however, 
utilizing high resolution and bandwidth hardware enables greater investigation outside the original 
project description. Such versatile systems generally support higher channel counts (16 – 64+), 
commercial wireless protocols (bluetooth or Wi-Fi), higher sampling rates (500 – 1000 Hz), and can take 
advantage of different signal modalities (e.g. EMG) at the cost of higher power (>50 mW) [46], [68], [69]. 
Low-noise and high-resolution systems allows for greater flexibility, repeated interpretable signal 
processing (frequency analysis, time-domain averaging, etc.) and algorithm development to illuminate 
different feature classes, mitigate interference, and discover new potential applications. Such systems 
have been used to build brain-machine interfaces with P300 responses and steady-state evoked 
potentials [27], [29], [34], [70], [71]. When adapting existing electronics for use with wearable dry 
electrodes, increased ESI, system noise, and interference susceptibility bear important considerations 
for power requirements and any downstream machine learning algorithm [72], [73]. Employing 
versatile, higher power electronics with more interpretable, light weight classical algorithms (e.g. logistic 
regression, support vector machines, random forest) is an important first step for future sensor and 
power optimizations.  To this effect, this work uses an existing, high channel count, high bandwidth 
system to enable studying the relationship between the employed ExG electrode technology and 
drowsiness detection. 

 In addition to system-optimization, the choice of machine learning algorithm determines system 
functionality from the perspective of training, data, and processing requirements. Every-day ExG 
systems would ideally work out of the box, improve over time, and continue to provide feedback when 
wireless connectivity is poor and there is unreliable access to large processing power (construction sites, 
planes, and trucks). Classical algorithms such as logistic regression, SVMs, and random forest have 
demonstrated impressive success in classifying neural signals with limited datasets [25], [74], [75], [76]. 
Neural network-based algorithms have also achieved impressive results [77], [78], [79], [80] and are 
good candidates for further research. Neural network-based algorithms, on average, require more 
training data than SVMs, logistic regression, and random forest, making them difficult to work with on 
smaller data sets. Furthermore, interpretable algorithms such as logistic regression and SVMs enable 
greater visibility into which types of features have sufficient SNR for classification and could potentially 
be applied to different applications. Lastly, algorithms such as SVMs, logistic regression, and random 
forest generally require less processing power than similarly performing neural net or perceptron-based 
architectures, making them ideal for low-power, edge-based deployments on existing microcontrollers. 
Additionally, while existing in-ear ExG BCIs have achieved high classification accuracies with user-specific 
training and validation [43], [78], [81] [35], [82], ideal in-ear ExG wearables would leverage pre-trained 
algorithms so never-before-seen users can use these devices without time-consuming training. This 
user-generic classification has been explored in scalp-based drowsiness monitoring with great success 
but not yet with in-ear ExG [15]. 



   
 

   
 

This project is the first integration and demonstration of wireless, dry-electrode in-ear ExG 
sensors used for drowsiness classification. To this effect, a novel in-ear EEG sensor manufacturing 
method coupled to a pre-existing wireless data acquisition platform is presented and verified with open-
source machine learning classification on 9-subjects. A fabrication process for dry, gold-plated 
electrodes suitable for repeated, comfortable, low impedance earpieces is introduced and tested over 
the course of months of electrode use. This electrode technology provides a unique method for the 
rapid prototyping of reusable, Au electrodes that remain stable over 12 months of use.  These 
electrodes can replace existing solutions that rely on shorter-lifespan Ag/AgCl electrodes or expensive 
materials such as platinum or IrO3. The earpieces are then coupled with wireless, discreet electronics 
capable of taking uninterrupted, low-noise neural measurements for over 40 hours [46] to form a 
wearable, in-ear ExG system. The resulting Ear ExG BCI is then demonstrated with a nine subject 
drowsiness monitoring study. Low-complexity temporal and spectral features are extracted from the 
recorded ExG data and used to train multiple, offline machine learning models for automated 
drowsiness detection. The best performing model utilizing a support vector machine achieved an 
average drowsy-event detection accuracy of 93.2% when evaluating on users it has seen before and 
93.3% when evaluating never-before-seen users. This system and its use of offline classifiers lays the 
groundwork for future, discreet, fully wireless, long term, longitudinal brain monitoring.  

 

 

Figure 1: Envisioned Ear ExG wearables could be discreetly worn throughout the day to comfortably 
record neural signals from inside the ear canal, perform drowsiness detection, and provide feedback. 

 

 

 



   
 

   
 

II. Ear ExG drowsiness monitoring platform 
a. Modular Electrode Design, Fabrication, and Assembly 

 
i. Earpiece design 

Easy-to-use neural wearables require a user-generic earpiece and electrode scheme designed 
for recording across multiple individuals. The in-ear electrodes must make consistent contact with the 
skin regardless of the individual’s age and be comfortable to wear for multiple hours at a time. To 
achieve these requirements, electrode and earpiece designs were derived from [46] and [83] and 
resulted in a small, medium, and large size of a single design with modular electrodes. Furthermore, as 
individuals age, their ear canals tend to develop a corkscrew shape with the about the isthmus. Thus, by 
staying near the ear canal entrance and not passing the isthmus, the implemented design can be worn 
regardless of age. Previous studies [30], [41] have highlighted high value electrode locations that 
minimize channel-to-channel correlation while maximizing mechanical stability. To also maximize 
electrode surface area across different individuals, small, medium, and large sized earpieces were 
designed with slightly differing electrode sizes. The final ‘medium-sized’ earpiece is comprised of four 60 
mm2 electrodes inside the ear canal and two 3 cm2 electrodes on the ear’s concha cymba and concha 
cavity (Figure 2a). The in-ear electrodes are cantilevers that apply gentle outward pressure to achieve 
lower ESI over previous iterations (370 kΩ to 120 kΩ at 50 Hz [46]) and improve mechanical stability. The 
out-ear electrodes act as fiducial guideposts to ensure the electrodes contact the same surface with 
each wear. Furthermore, electrodes outside the ear are good reference and ground candidates due to 
their increased distance from the brain or any muscle. To improve the earpiece assembly and further 
increase comfort over [46], a soft earpiece body with a manifold in-ear design was 3D printed with a 
clear methacrylate photopolymer (Figure 2a). Each rigid electrode is attached to this soft, elastic 
substrate and moves independently from the other electrodes to fit in a subject’s ear. This new, 
modular assembly properly demonstrates the capabilities of the manifold earpiece fabrication process. 

ii. Electrode fabrication 

A low-cost, fully electroless plating process was developed to enable rapid prototyping of 
arbitrary shaped electrophysiological sensors. Electrodes were 3D printed with a clear methacrylate 
polymer (Figure 2d) and sandblasted to increase surface roughness. Samples were then submersed in 
different catalyst baths to develop copper, nickel, and gold metal layers. Lastly, tinned copper wires are 
soldered directly to the electrode surface for integration with the neural recording front end. This 
plating process is expanded on [45], [84] with the addition of a nickel layer that limits grain-boundary 
diffusion of copper and significantly extends electrode lifetime [84], [85], [86]. Furthermore, the nickel-
plating step removes the need for repeated electroless palladium plating and the overall number of 
fabrication steps. While other in-ear electrodes use expensive materials like IrO3 or hydrogels [39], [40], 
this improved layer stack-up (Cu, Ni, Au) is reminiscent of printed-circuit-board fabrication and enables 
similar levels of scale for electrode prototyping. The final surface contains at least 0.5 µm of copper, 0.5 
µm of nickel, and 0.25 µm of gold and is suitable for dry electrode recording. 

 

 

 



   
 

   
 

iii. Plating process characterization 
 

1. Material acid dip tests & tape tests 

The final electrode surfaces were physically and chemically robust. Kapton tape was applied 
around the entire electrode surface and then removed. No visible gold, nickel, or copper was removed 
with the tape indicating strong adhesion to the methacrylate substrate [84], [87]. Electrode samples 
were also dipped in nitric acid baths to test the porosity and continuity of the gold surface. While 
concentrated and dilute nitric acid will readily dissolve copper and nickel, respectively, neither will etch 
gold. No noticeable differences were observed after dipping gold-plated electrodes into a 1M nitric acid 
bath. Control samples of copper and nickel, however, were quickly etched down to the bare 
methacrylate surface. The acid dip tests and subsequent microscope inspections (Figure 3a) found no 
micro or nano cracks that may affect the electrode’s surface or electrical properties.  

2. Surface roughness characterization 

 Light microscopy photographs and stylus profilometry measurements were used to assess 
surface roughness between each step of the plating process on a single flat sample. Figure 3b plots the 
normalized surface topography of the sample during each plating step. The reported Rp values are the 
standard deviation of the plotted lines. Though surface roughness decreases slightly with each 
subsequent plating step, the final gold surface is still much rougher than a simple, planar surface. This 
increases electrode surface area, promotes better film adhesion, and reduces ESI [50], [84], [87], [88].  

3. Sheet resistance 

Sheet resistance was characterized by a 4-point probe immediately after plating. 40 sheet 
resistance measurements were taken of each copper-, nickel-, and gold-plated samples. As prepared, 
copper-plated samples, nickel-plated samples, and gold-plated samples exhibited an average sheet 
resistance of 177.9 ± 109, 95.5 ± 13, and 30.3 ± 3.7 mΩ □−1, respectively (Figure 3c). With each 
subsequent metal layer, the sheet resistance stabilized, and the surfaces became more conductive. 

iv. Bioimpedance of In-ear electrodes across multiple users 

Impedance spectroscopy was used to assess in-ear electrode-skin impedance. Four subjects took 
impedance measurements (20 total measurements) between the in-ear electrodes and the out-ear 
cymba electrode. To account for future, real-life conditions with cerumen and oil, no skin preparation 
was performed before each trial, and measurements were repeated until all four electrodes in the ear 
canal were measured. Since the ESI measurements include two dry electrodes, the plotted values were 
divided by two to demonstrate the average ESI of a single dry electrode. All measurements were 
performed with an LCR meter (E4980 A, Keysight) powered by a wall outlet and arranged as a two-point 
probe where a single electrode is considered a single probe. The LCR meter was configured with a 
current limit of 0.5 mA to prevent sensation or injury. While the LCR meter is designed to achieve high 
accuracy (within 3%) even in the presence of powerline interference, electrode cables were shielded by 
ground wires to further minimize interference. All impedance results were fitted to an equivalent circuit 
model (spectra shown in Fig. 3d, circuit model shown in Fig. 3e) to better understand motion artifact 
settling times associated with the phase elements of the electrode skin interface and provide reference 



   
 

   
 

for future analog front-end designs. At 50 Hz, the interface has an average impedance of 120 kΩ and 
phase of −33°. 

b. Lightweight ExG Recording System 

ExG was recorded using an existing compact, wireless recording platform affixed to a headband 
(Figure 4a). The platform, known as WANDmini, is a wireless neural recording frontend built for and 
already deployed in previous in-ear EEG studies [46]. It is adapted from a system originally designed for 
electrocorticography and comprises a custom neural recording circuit [69], [89]  (NMIC[89], Cortera 
Neurotechnologies, Inc.), a microcontroller, and a Bluetooth radio for wireless transmission. The NMIC 
digitizes up to 64, fully differential channels of electrophysiological activity with a sampling rate of 1 
kSps. WANDmini arranges the NMIC’s channels in a monopolar montage with a single reference 
electrode. This arrangement is it suitable for EEG, EOG, and EMG recording and provides enough 
sampling and channel count headroom to remove any recording electronics related bottlenecks. An 
onboard microcontroller and radio packetizes and streams digitized neural data to a base station 
connected to a host machine over Bluetooth Low Energy (BLE) (Figure 4a). System power is dominated 
by the microcontroller and Bluetooth transmission (98.3%) thus making unused channels immaterial 
from a power perspective. With the NMIC and WANDmini power consumptions, 700 µW and 46 mW, 
respectively, a 3.7 V 550 mA battery can provide ~44 hours of runtime. In summary, the NMIC’s 
significantly lower power than common commercial neural frontends (e.g. ADS1298/1299), high channel 
count, and sufficiently low noise floor makes it ideal for use in modular in-ear EEG prototypes. NMIC and 
WANDmini specifications are listed in Table 1 and further detailed in Supplement section II.h. The host 
machine uses a custom graphical user interface (GUI) that plots and saves all incoming data and cues for 
the trail overseer. This custom GUI is unique to this work and provides the test subject with a reaction 
time game, auditory cues, and visual alerts during experiments. More information about the GUI is 
available in section 2h of the supplement. 

 
c. EEG Characterization and User-Generic Drowsiness Detection 

i. Drowsiness Study 

To characterize the full system performance, 35 hours of Ear ExG data was recorded during a 
nine subject drowsiness study. Subjects wore two earpieces with the electrodes organized in a 
contralateral monopolar montage. Previous works have demonstrated that electrodes on a single 
earpiece are sufficiently distant from each other to measure ExG [37], [41], but greater signal amplitude 
can be recorded with electrodes placed across both ears [39], [45]. To induce drowsiness, subjects 
played a repetitive reaction time game. Every 60 seconds, a user was prompted to press a random 
number between 0-9 and their reaction time was recorded (Figure 4a). Every five minutes, the user was 
prompted to enter a Likert item according to the Karolinska Sleepiness Scale (KSS). This scale is 
frequently used to evaluate subjective sleepiness and ranges from 0 = “extremely alert”, to 10 = 
“extremely sleepy, fighting to stay awake”[90]. Queue intervals (60 seconds and 5 minutes) were 
selected based off initial experimentation and previous works that demonstrated a balance between 
minimizing disturbances and frequent datapoints [45], [91]. All recorded ExG, cue timing, reaction times, 
and Likert items are saved by a custom GUI for post-processing and machine learning model training 
(Figure 4b). Immediately after each trial, reaction time and Likert items were thresholded per subject to 
automatically generate alert/drowsy labels for each trial since behavior and response time metrics are 



   
 

   
 

heavily correlated with drowsiness [6], [90], [91]. By taking both an objective and a subjective 
drowsiness measurement, high confidence data labels could be generated in face of user-error and user-
bias (memory of previous KSS scores affecting subsequent scores). Both objective and subjective 
measures must agree to classify an event as drowsy. Furthermore, as noted in previous works, reaction 
times and likert scores are variable on a subject-to-subject basis. As a result, each trial was thresholded 
on a per subject basis. Each trial contained at least one drowsy event, and 65 drowsiness events were 
recorded across 34 trials.  

ii. Drowsiness Classification Pipeline 

The training pipeline for ExG data consisted of post-processing, feature extraction, and model 
training steps (Figure 5a). ExG recordings were referenced to maximize spatial covering, band pass 
filtered, and segmented into 50 second or 10 second windows. If a window of data exhibited an artifact 
greater than 10 mV (from motion) it would be discarded. This was happened very infrequently as most 
artifacts were less than 1mV above the baseline rms voltage.  Temporal and spectral features relevant 
for ExG-based drowsiness detection were implemented to target ocular artifacts and activity in standard 
EEG frequency bands relevant to drowsiness detection: delta (δ, 0.05-4Hz), theta (θ, 4-8Hz), alpha (α, 8-
13Hz), beta (β, 13-30Hz), and gamma (γ, 30-50Hz). Binary (alert/drowsy) classification was performed 
with low-complexity logistic regression, support vector machine (SVM), and random forest classifier 
models.  

Three cross validation techniques were used to estimate model performance across varying 
usage scenarios: user specific, leave-one-trial-out, and leave-one-user-out. User-specific cross validation 
trained models on n-1 trials for the subject, tested on their remaining trial, and averaged the results 
after n independent iterations to determine drowsiness detection accuracy for a single subject. Leave-
one-trial-out cross validation trained models on 33 of the recorded trails, tested on the remaining trial, 
and averaged results after all 34 independent iterations to determine the study’s overall drowsiness 
detection accuracy. Leave-one-user-out cross validation trained on recordings from 8 subjects, tested on 
the remaining subject’s recordings, and averaged results after all 9 independent iterations. This 
evaluated detection accuracy when using population-training and deploying on a never-before-seen 
subject. Due to the inherent imbalance between drowsy and alert classes, each classification model 
employed a balancing scheme where over-represented classes are given a smaller class-weight than 
under-represented classes. In the case of drowsy vs. alert, alert epochs are given a class weight inversely 
proportional to the number of epochs. This allows classes to be treated more fairly across all 
training/cross-validation regimes (since they will all have different class balances). During validation, 
class probabilities returned from the classifier models were filtered with a 3-tap Hamming window FIR 
filter and thresholded to achieve final binary outputs (Figure 5b). 

iii. Drowsiness classification results 
1. Alpha modulation ratio 

Alpha waves (8-12 Hz) are a spontaneous neural signal that can reflect a person’s state of 
relaxation, which makes them an important spectral feature in ExG-based drowsiness classification [76] 
A sample recording from a single user demonstrating alpha wave modulation is presented in Figure 6a. 
This modulation is clear in the time frequency spectrogram (Fig 6a). To assess the modulation ratio more 
quantitatively, Figure 6a also plots the average power across the entire alpha band while the subject 
opens and closes their eyes every 30 seconds. The presented sample data’s modulation ratio was 2.001. 



   
 

   
 

2. Classifier comparison across validation schemes 

The overall average of the user-specific classification results ranged from 77.9% to 92.2% across 
all models and feature window sizes. In the user-generic leave-one-trial-out case, average classification 
accuracy was higher and ranged from 91.4% to 93.2% when cross-validating across the 34 trials. This is 
most likely due to the increased amount of data available for training. Lastly, the leave-one-user-out 
validation scheme achieved average classification accuracies from 88.1% - 93.3% across all users, 
window sizes, and models. Figures 6b - 6g showcase average model accuracy and standard deviation 
where appropriate. 

3. 10s vs 50s windows 

Two feature windowing schemes were investigated, 10 second (Figure 6b – 6d) and 50 second 
(Figure 6e – 6g) windows. All training steps, including feature selection, are performed independently. 
The 10 second feature windows result in significant performance loss in the user-specific validation 
scheme. For example, the average user-specific logistic regression-based classifier performance 
increased from 77.9% to 90.8% when increasing feature window sizes to 50 seconds. Minimal accuracy 
loss, however, was observed when using leave-one-trial-out and leave-one-user-out validation schemes 
with features from 10 second windows. This minimal accuracy loss is most likely due to the increased 
amount of training data available (~30 trials) to the models relative to the user-specific cases where 
individual models only train on a 1 - 4 of trials. 

4. Classifier architecture comparison 

Three low-complexity machine learning models were used to promote the scalability and 
usability of the drowsiness detection platform. All models were implemented in Python 3.8 using scikit-
learn packages. Logistic regression models were implemented with a stochastic average gradient 
descent solver. L1 regularization was used to add a penalty equal to the absolute value of the magnitude 
of the feature coefficients. Support vector machines were implemented with a radial basis function 
(RBF) kernel to account for data that may not be lineally separable. The trained models utilized a 
maximum of 400 support vectors and a regularization parameter, C=1. Random forest models were 
implemented with 100 trees and a maximum depth of five to prevent overfitting. These 
implementations resulted in memory footprints that were estimated using python’s pympler package. 
The logistic regression, SVM, and RF models required 2.8 kB, 144.2 kB, and 63.8 kB respectively. These 
memory requirements are well within the capacity of modern microcontroller’s embedded memories 
(e.g. 32 bit ARM Cortex-M). 

Since all three models achieve high accuracy, it is clear that drowsiness is classifiable with in-ear 
eeg recording. No model shows markedly greater performance or another. The logistic regression model 
is more computationally efficient, requires significantly less memory, and can be more easily 
trained/deployed with smaller datasets. It is important to verify that logistic regression continues to 
perform as well across larger demographics, a topic for future studies. 



   
 

   
 

Figure 2: Earpiece assembly, fit, and manufacturing process. (a) The final earpieces are composed of four 
in-ear electrodes and two out-ear electrodes. Manifold 3D-printed earpieces are assembled by plugging 
rigid, gold-plated earpieces into a soft, flexible skeleton. (b) The out-ear electrodes press against the 
ear’s concha cymba and concha bowl, while the in-ear electrodes contact the ear canal’s aperture. In-ear 
electrodes only enter the first 10 mm of the ear canal. (c) Diagram and photographs of electrode 
fabrication: i) Electrodes are 3D printed or molded. ii) The bare electrodes are sandblasted and cleaned. 
iii) The electrodes are electroless copper plated via exposure to surfactant, catalyst, and copper sulfate 
solutions in sequence. iv) A nickel layer is electroless plated. v) A final gold layer is electroless deposited. 

Figure 3: Plated Surface Characterization. (a) Light microscopy images of plated surfaces showcasing the 
roughness resulting from sandblasting. (b) Stylus Profilometer measurements of a flat sample after each 
plating step. (c) Absolute sheet resistance measurements, mean (red circle), and standard deviation 
(error bars) immediately after plating. (d) In-ear electrode-skin impedance magnitude and phase. (e) 
Constant phase element electrode model used for fitting.  

 



   
 

   
 

 

Figure 4: Experimental setup, recordings, and automatic labeling. (a) Subjects sit beside a laptop 
displaying a basic reaction time measuring game. A head-worn WANDmini, secured in a 3D printed 
enclosure, records and transmits ExG from contralaterally worn earpieces to a base station via BLE while 
the subject plays the game. All captured ExG can be live plotted for the trial overseer while the game 
records subject’s reaction times and Likert survey responses. (b) Recorded ExG, reaction times, and Likert 
items are used to generate features and labels for a brain-state classifier. Drowsy events, shaded in 
green, are determined when a subject’s reaction time and Likert response cross a drowsiness threshold 
that is determined per subject. Using both the reaction time and Likert scores enables robust label 
creation that is agnostic to temporary user-error. 

 

Table 1: Relevant system, WANDmini, and NMIC specifications. 

 



   
 

   
 

 

Figure 5: Block diagrams outlining the model training and validation procedures for performing 
drowsiness detection. (a) Ear ExG experimental recordings are re-referenced, filtered, cleaned of motion-
contaminated epochs, and then undergo feature extraction and model training. (b) Cross-validation is 
performed similarly, featurized ear ExG epochs are fed to all three classification models. Model outputs 
are then fed to an event detector that performs a moving average and then thresholds the resulting 
classifications to estimate alert and drowsy states.  

 

 

 

 



   
 

   
 

 

Figure 6: Sample EEG measurement and classifier performance. (a) Spectrogram demonstrating alpha 
modulation when the subject closes their eyes. Alpha bandpower (8 – 12 Hz put through a 2 second 
rolling average filter for clarity)  is modulated by 4x in amplitude when eyes are closed. (b) Logistic 
regression event detection with 10 sec feature windows. (c) Support vector machine event detection with 
10 sec feature windows. (d) Random Forest event detection with 10 sec feature windows. (e, f, g) 
Drowsiness event detection using 50 sec feature windows. 

 

III. Summary: 

We have reported the design and fabrication of in-ear dry electrodes along with the assembly, and 
evaluation of a wireless, wearable, in-ear ExG platform for offline drowsiness detection in never-before-
seen users. All aspects of this platform can be adapted to different use-cases. The 3D printed and 
electroless Au plated electrodes can be rapidly augmented for any anatomically optimized wearable and 
used/re-used for long periods of time, WANDmini can support multi-day electrophysiological 
monitoring, and the presented offline classifiers demonstrate the potential for future dry-electrode 
based brain-state classification. In contrast to other state-of-the-art in-ear recording platforms, the 
electrodes, wireless electronics, and lightweight algorithms presented lay the groundwork for future 
large-scale deployment of user-generic, wireless ear ExG brain computer interfaces that use multiple 
machine learning algorithms. 

 Our results are promising for the development of the next generation of standalone wearables 
that can monitor brain and muscle activity in work environments and in everyday, public scenarios. To 
realize these standalone, wireless systems, future work requires integrating these classifiers on-chip for 
real-time brain-state classification and miniaturizing all the hardware into a pair of earbuds. 
Furthermore, the hardware would need to support online classification to allow for full-day, itinerant 
use. Lastly, it would be important to take this miniaturized hardware and implement a user-study with a 



   
 

   
 

wider demographic. By monitoring in-ear EEG across individuals aged 18 – 65+, further age specific 
models can be investigated. If a monolithic model is unable to classify drowsiness stereotypes across 
such a large age range, it would be interesting to provide models with context such as age, gender, 
known sleep disorders, and previous night’s sleep quality. Furthermore, the feature selection performed 
in this work suggests that simpler calculations such as bandpower ratios are sufficient for drowsiness 
classification. If this remains the case across larger demographics, then feature extractors can ignore 
computationally expensive features such as standard deviation, different entropy measures, etc. to 
reduce power in embedded classification scenarios. With aforementioned integration, a pair of ear ExG 
buds would significantly enable long term, daily recording ExG without interrupting a user’s day or 
stigma. These measurements would enable an entirely new era of research for tracking long-term 
cognitive changes from disorders such as depression, Alzheimer’s, narcolepsy, or stress. 

 

Table 2: Comparison of this work with other in-ear drowsiness monitoring works 

   Hwang '16 Nakamura '17 Hong '18 Barua '19 Gangadharan '22 This Work 
 
 

Setup 

#  Users 13 4 16 30 18 9 
#  Recordings 13 4 16 312 18 34 

Recording length (min) 60 - 90 45 55 - 75 30 40 40 - 50 
               

 
 
 
 
 

Electrodes 

Format In-ear In-ear In-ear Scalp Muse Headband In-ear 
Single/both ears single Single Single - - Both 

Wet/dry Wet Wet Wet Wet Dry Dry 
# Channels 1 2 1 30 4 11 

Generic Yes Yes Yes Yes Yes Yes 
Assembly material Metallic Foam Silicone Metallic Plastic 3D printed polymer 

Electrode -- Ag/AgCl wire Ag + Cu -- Au Au 
        

 
 

System 

Wired/wireless Wired Wired Wired Wired Wireless Wireless 
Data rate - - - - 1 Mbps+ 1.96 Mbps 

Power - - - - - 46 mW 

Battery life - - - - 5 hours 44 hours 
               

 
 
 

Algorithm 

Model SVM SVM SVM SVM SVM LR 
Window size 5s 30s 60s 60s 4s 50s 

Sensitivity - - - 94%+ 78.95% 95.60% 
Specificity - - - 92%+ 77.64% 93.00% 
Accuracy 88.30% 82.90% 93.50%* 93% 78.30% 93.30% 

*99 when evaluating on 230s epoch of EEG, ECG, and PPG features 

 
 

 



   
 

   
 

IV. Methods 
 

i. Electrode fabrication 

Both the electrodes and earpiece were printed with a stereolithography (SLA) 3D printer 
(Formlabs Form 3 printer) with a standard, clear methacrylate photopolymer (Figure 2d). An SLA printer 
was used due to its increased precision over standard filament deposition modeling (FDM) based 
printers. In SLA printers, thin layers of photosensitive polymer are cured by a laser. The resulting printed 
surfaces must be washed and cured in UV to achieve the final 3D part. 

The original 3D printed surface is highly anisotropic due to the structure’s uniformly printed 
layers. To create a more heterogenous surface, electrode structures were sandblasted with 100 grit 
white fused aluminum oxide blasting media (Industrial Supply, Twin Falls, ID) to remove the regular 
surface pattern leftover from the printing process while also increasing the effective surface area. The 
sandblasted samples were then sonicated in a bath of Alconox cleaning solution for approximately 10 
minutes and rinsed with DI water. Lastly, the electrode structures were treated in a bath of 1% 
benzalkonium chloride (Sigma Aldrich 12060-100G) surfactant solution for 10 minutes. These surface 
treatment steps ensure a clean plating surface with high surface energy and lead to improved 
catalyst/metal layer adhesion. 

The samples are then submersed in catalyst and plating baths. First, the electrodes are 
submerged in a beaker of palladium-tin catalyst for 10 minutes followed by a copper plating solution for 
a minimum of six hours. This initial plating step results in a thick copper layer that will oxidize if left out 
in ambient atmosphere. As a result, samples would then be quickly rinsed, dried, and placed in a nickel-
plating bath for approximately 10 minutes (SIGMA ALDRICH 901630). Afterwards, the electrodes are 
placed in an electroless gold plating solution for approximately 15 minutes. In between plating steps, 
the samples were rinsed with DI water and dried thoroughly.  

 

b. WANDmini: ExG recording hardware 

The WANDmini board contains a neural recording frontend (NMIC), a SoC FPGA with a 166 MHz 
Advanced RISC Machine (ARM) Cortex-M3 processor (SmartFusion2 M2S060T from Microsemi), and 
low-energy radio (nRF51822 from Nordic Semiconductor). The SoC FPGA forms a custom designed 
2Mb/s digital signal and clock interface with a single NMIC, aggregates all data and commands into 
packets, then streams all the packets to the 2Mb/s 2.4 GHz low-energy radio.  

WANDmini also contains a 20MHz crystal oscillator as a clock source, on-board buck converters 
(TPS6226x from Texas Instruments), a battery charger circuit (LTC4065 from Linear Technology), and a 6-
axis accelerometer and gyroscope (MPU-6050 from InvenSense). While WANDmini can record up to 64 
channels of electrophysiological data and motion information from the accelerometer, the drowsiness 
detection application only uses 11 channels for ExG monitoring. Future applications may integrate real-
time motion artifact cancellation and classification directly into the WANDmini’s SoC FPGA.  

 



   
 

   
 

c. Subject selection and earpiece application 

Nine subjects (7 male, 2 female, ages 18-27) volunteered for this study. Subjects were requested 
not to exercise or drink caffeine before any trial. Prior to the first experiment, subjects tried out small, 
medium, and large earpieces and selected the pair they felt were most comfortable and secure in ear. 
During this onboarding session, subjects also familiarized themselves with the GUI. 

At the start of the drowsiness trials, subjects were given their preferred ear EEG earbuds to 
wear, as well as an electronics headband with a fully charged Li-Po battery and the WANDmini recording 
hardware. To maintain a realistic daily use scenario, the subjects did not clean or prepare their skin and 
no hydrogel or saline was applied to the earpiece dry electrodes. The trial hosts also did not help 
subjects don/doff the headband or earpieces unless explicitly requested. After the experiments, the 
earpieces were cleaned with 70% isopropyl alcohol since they would be later used by other subjects.  

 

d. Electrophysiological recording setup 

Each earpiece has six electrodes, four inside the ear canal and two outside the ear canal. The 
default recording arrangement employs two contralaterally worn earpieces to maximize spatial 
coverage and recorded signal power [27], [39]. These two earpieces provide up to 11 ExG channels with 
a common reference. Either of the concha cymba electrodes can be used as a reference (the un-used 
one can be used as an additional sense electrode). After initial experimentation, it was determined that 
the right concha cymba electrode was sufficient as a reference electrode across all subjects. As a result, 
each ExG channel is referenced against the right concha cymba electrode in a monopolar montage 
(electrode Y in Figure 2A). A single wet Ag/AgCl electrode was applied to the subject’s right mastoid and 
connected to battery ground for interference reduction. 

 

e. Drowsiness trial overview 

Subjects participated in multiple drowsiness trials to enable both user-specific and user-generic 
training. Subjects were not familiar with the ear EEG work when selected. No more than five trials were 
recorded per subject to maintain a diverse data pool. Prior to the trials, subjects were informed of the 
study purpose and requested to have a ‘normal night’s rest’ (subjectively) and not drink caffeine prior to 
the trial. Trials took place in a quiet, indoor office space between 8am – 5pm when the lights were on. 
After donning the ear eeg system, the subject was left alone in the trial space until the end of the 
recording session. During the trial, the subject would sit at a desk in front of a laptop with a custom GUI. 
Subjects were instructed to only perform the reaction game task and not look at personal devices for 
the extent of the trial. Subjects were allowed to move their heads, readjust in their seat, and move their 
arms, but were asked to stay seated during the entire session (to minimize motion artifacts). Each trial 
was 40 – 50 minutes in length and was self-ended by the subject to prevent the interruption of a drowsy 
event. At the end of the trial, the subjects removed the headband and earpieces themselves. They were 
instructed to wait at least 24 hours before participating in subsequent drowsiness trials to maximize 
variation between trials. 

 



   
 

   
 

f. Label generation 

Recording both objective and subjective drowsiness measures made the label generation 
process robust to user-error momentary distractions (when an alert user looks away from the laptop). 
Ear ExG samples were labelled as ‘drowsy’ if the user reported a drowsiness Likert item >5 and if their 
reaction time was more than double the average from the first 5 minutes of recording. The labels were 
then passed through a 3-sample rolling average filter and thresholded to achieve a binary label. 

 

g. Re-referencing and filtering 

ExG re-referencing was used to maximize spatial covering across contralateral earpieces. Each 
in-ear electrode was re-referenced to the left concha cymba electrode and processed with the 11 EEG 
channels recorded with the right concha cymba electrode. To remove power-line interference (60 Hz in 
North America) while maintaining as much EEG activity as possible, both the recorded and re-referenced 
EEG channels were bandpass filtered from 0.05 - 50Hz. Filters were implemented with a 5th order 
butterworth high pass filter (corner of 0.05 Hz) and a 5th order Butterworth low pass filter (corner of 50 
Hz). Both filters were implemented in python but can also be implemented with infinite impulse 
response (IIR) filters with 16 bit registers for use in FPGA/embedded applications. 

 

h. Data segmentation 

Filtered ExG was segmented to remove ExG artifacts related to decision-making and motor 
planning in response to GUI cues. Each epoch began 10 seconds after a reaction time cue and ended 
when the next reaction time cue was provided. When using the maximum window size, features were 
calculated for these 50 second epochs. When using a reduced window size, each 50 second epoch and 
its corresponding label were divided into five 10 second windows. To focus classification on drowsiness 
onset, epochs were considered “sleep” if a subject’s rection time exceeded 10 seconds. These epochs 
were excluded from the study. 

 

i. Feature extraction and selection 

Temporal and spectral features were extracted in Python 3.8 from the segmented ExG data. 
Low-complexity features were calculated for each window of ExG data and across all the recorded and 
re-referenced channels. Voltage standard deviation and maximum peak-to-peak voltage amplitude were 
calculated in the time-domain to target eye blink artifacts and motion. Welch’s method (using a 1000-
point Fourier transform, 500 sample overlap, and Hamming window) was used to calculate the power 
spectral density (PSD) and attain frequency characteristics that relate attention and relaxation. The 
following spectral features were calculated prior to training: maximum PSD, peak frequency, and PSD 
variance were calculated for δ, θ, α, β, γ EEG bands. Absolute and relative band powers were also 
calculated for the following bands and ratios: δ, θ, α, β, γ, α/β, θ/β, (α + θ)/β, and (α + θ)/(α + β). 
Relative bandpower is the specific band relative to the total PSD from 0.5 – 50 Hz. Furthermore, features 
of the previous epoch were included to account for changes in ExG activity, since temporal and spectral 



   
 

   
 

features relate to characteristics that changes during the onset of drowsiness such as attention and eye 
movement. A complete table of features used in offline training (prior to feature selection) are below.  

Table 3: Per channel extracted features 

Maximum peak-to-peak voltage 
Standard deviation of voltage 

Maximum PSD (δ, θ, α, β, γ bands) 
Peak frequency (δ, θ, α, β, γ bands) 

PSD variance (δ, θ, α, β, γ bands) 
Absolute power (δ, θ, α, β, γ, α/β, θ/β, (α + θ)/β, (α + θ)/(α + β) 
Relative power (δ, θ, α, β, γ, α/β, θ/β, (α + θ)/β, (α + θ)/(α + β) 

 

All features were scaled by subtracting the median and scaling according to their interquartile 
range. To reduce input feature count, feature selection using an analysis of variance (scikit-learn Python 
3.8) was performed to determine the top 20 features (total) that minimize redundancy and maximize 
class variation during training. Only these 20 features are included during model training and validation. 
This feature selection also implicitly selected best performing electrodes across users (most likely due to 
some electrodes fitting better than others). The same feature type was also selected for multiple 
channels (e.g. the top 20 features would include alpha band power from channel 1, 5, and 10). 
Contralateral channels (where sense and reference electrodes are in different ears) were always 
weighted higher than ipsilateral channels. The most used features (in order of importance) are shown in 
Table 4. 

Table 4: Top features selected for training and validation 

α relative power 
β relative power 
δ relative power  

Previous epoch’s α relative power 
Previous epoch’s β relative power 
Previous epoch’s δ relative power 

θ/β absolute power 
(α + θ)/β absolute power 

(α + θ)/(α + β) absolute power 
 

 Spectral features associated with eye movement, relaxation, and drowsiness were the most 
important for model training. Furthermore, the previous epoch’s features were also generally 
important. This is corroborated by results from other works on scalp data in [14], [76], [82]. All feature 
extraction was performed in Python using numpy. For implementation into an embedded/FPGA 
environment, these features can be calculating using a coarse fast-Fourier transform, look-up-tables, 
and the CORDIC algorithm. 

 

 



   
 

   
 

j. Study approval 

The user study, subject recruitment, and all data analysis was approved by UC Berkeley’s 
Institutional Review Board (CPHS protocol ID: 2018-09-11395).  
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