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ABSTRACT | This review focuses on recent directions stem-

ming from work by the authors and collaborators in the

emerging field of neurotechnology. Neurotechnology has the

potential to provide a greater understanding of the structure

and function of the complex neural circuits in the brain, as

well as impacting the field of brain–machine interfaces (BMI).

We envision ultralow-power wireless neural interface systems

that are life-lasting, fully integrated, and that supports bidi-

rectional data flow with high bandwidth. Moreover, we

believe in the importance of building neural interface tech-

nology that is truly tetherless, has a very small recording

footprint, and little to no mechanical coupling between the

sensor and the external world. We believe these develop-

ments will impact both neuroscience and neurology, reveal-

ing fundamental insight about how the nervous system

functions in health and disease.

KEYWORDS | Brain–machine interfaces; electrophysiology;

neural interfaces; neurotechnology

I . INTRODUCTION

The goal of cortically controlled brain–machine inter-

faces (BMIs) is to reliably, accurately, and robustly con-

vey enough motor-control intent from the central

nervous system (CNS) to drive multi-degree-of-freedom

(DOF) prosthetic devices by patients with amputated,

paralyzed, or otherwise immobilized limbs for long pe-

riods of time (decades). To achieve this goal, two main
challenges remain: 1) how to make viable neural inter-

faces that last a lifetime; and 2) skillful control and dex-

terity of a multi-DOF prosthetic device comparable to

natural movements [1].

The first challenge, which is the one we focus on in

this paper, entails having a life-lasting, fully integrated,

high-bandwidth, ultralow-power wireless neural interface

system that supports bidirectional data flow, for example,
reading (recording) and writing (stimulating) from/to

the brain at different spatial and temporal scales. Ideally,

these systems would be fully implantable in the intracra-

nial space as well as have battery-less operation. They

should also be modular enough to allow the measure-

ment of different types of neural signals, such as the

extracellularly recorded discharge of individual neurons
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(typically referred as single-unit and multiple-unit activ-
ity), and the field potentials from large numbers of chan-

nels sampled at different frequencies, as well as perhaps

other physiological parameters such as temperature,

blood flow, brain pulsation, etc., that may become im-

portant in future generations of this technology.

Moreover, we believe in the importance of building

neural interface technology that is truly tetherless, has a

very small recording footprint, little to no mechanical
coupling between the sensor and the external world, and

for which continuous performance tracking and a predic-

tive failure model can be constructed. With such a sys-

tem, BMI algorithms would track electrode health and

predict which channel/single units are best candidates

for replacement to maintain unsupervised BMI perfor-

mance over time.

Moving this vision forward will require high channel
count neural recording interfaces that operate within the

CNS for appreciable fractions of a primate lifetime. We

posit that this technology challenge has four principal

thrusts; this review focuses on the first three: 1) the devel-

opment of a suite of extremely axially compliant implant-

able recording nodes; 2) the development of active

devices which enable RF coupling, front-end amplifica-

tion, inline electrode health determination, and transcra-
nial communication; 3) the development of completely

tetherless interface technologies, and 4) of the refinement

or development of materials which allow such implants to

survive in the molecularly rich brain environment.

Fig. 1 provides a schematic overview of components

and representative variants. The remainder of the paper

describes a range of efforts performed at Berkeley to ad-

dress each of the challenges.

A. Development of Ultrasmall, Ultracompliant
Implantable Recording Nodes

Parylene and polyimide technology has been used to

produce a number of extremely thin, flexible compo-

nents suitable for neural recording [2]–[25]. Recently,

for example, the technology has seen a renaissance in

the production of high-density microfabricated electro-

corticography grids [26]–[30].

As an example, we demonstrated a flexible 256-

electrode microfabricated electrocorticography ð�ECoGÞ
array with an electrode pitch of 500 �m [31]. This �ECoG
grid was a flexible five-layer parylene MEMS device (two

layers of platinum insulated by three layers of parylene)

featuring plasma-etched vias and a monolithically inte-

grated parylene cable which is compression-bonded to a

fan-out board using anisotropic conductive film (ACF)

technology. The devices were characterized by electro-

chemical impedance spectroscopy in artificial cerebrospinal
fluid (aCSF) and initially vetted with recorded acoustic

evoked potentials in vivo from the rat primary auditory cor-

tex. More recent work by Bouchard and colleagues has

made use of this technology to record functionally evoked

multiple-unit activity from the cortical surface in three dif-

ferent animal models [32]. This work demonstrates that

�ECoG-recorded potentials have waveform characteristics

similar to multiple-unit activity collected with penetrating
electrodes; are evoked by auditory stimuli and are tuned to

auditory parameters; and are evoked and manipulated by

direct optogenetic intervention. Together, these results

demonstrate that �ECoG can record localized and func-

tionally meaningful neural output from the cortical surface,

increasing its utility as a methodological bridge between

basic and clinical neuroscience.
Fig. 1. A conceptual view of the various components, scales, and

variants in putative CNS interfaces.

Fig. 2.Micrographs and SEM images of the 16-channel and

49-channel devices. (a) Bond pad damage on ITO-only devices.

(b) Intact electrodes of a 16-channel ITO device. (c) Electrodes

and interconnects of a 49-channel Au-ITO hybrid device.

(d) 16-channel hybrid array. The ring-shaped electrodes are made

of ITO. The light yellow lines indicate the overlap of Au and ITO.

The lower part of the connections consists of Cr/Au. Adapted

from [34].
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In addition, some preliminary work by Ledochowitsch
points to the utility of such high-resolution interfaces for

use in BMI tasks. In that work, we investigated if sub-

dural field potentials recorded by microfabricated elec-

trocorticography arrays containing electrodes < 1 mm

apart could be decoupled through closed-loop BMI learn-

ing [33]. Microfabricated ECoG arrays were chronically

implanted subdurally over primary motor cortex (M1) of

five male Long-Evans rats who were trained to perform a
1-D center-out task using closed-loop brain control to

adjust the pitch of an auditory cursor by differentially

modulating high gamma (70–110 Hz) power on pairs of

surface microelectrodes that were separated by less than

1 mm. Although the results are preliminary, the animals

were able to learn to use pairs of output electrodes

quickly and to decouple gamma power on length scales

as small as 200 �m. Interestingly, the rats’ ability to
learn the BMI task appeared to depend on the specific

choice of control electrodes.

The basic technology can be further expanded by utiliz-

ing novel materials to provide additional or application-

specific functionality. For example, a variant of the �ECoG
above was produced using indium tin oxide (ITO) to

produce optically transparent arrays with no photoelectric

recording artifacts during optical stimulation [34]. These
devices were a 49-channel ð�ECoGÞ array with an elec-

trode pitch of 800 �m and a 16-channel linear ð�ECoGÞ
array with an electrode pitch of 200 �m (Fig. 2). The back-

ing material was Parylene C. Transparent, sputtered in-

dium tin oxide (ITO) with sheet resistances of 40 �/square
was used in conjunction with e-beam evaporated gold to

fabricate the electrodes. The transparent layer demon-

strated 90% transmission between 285 and 775 nm.
This technology was subsequently used to demon-

strate a large-scale neural interface combining optoge-

netics and �ECoG array technologies in mouse, rat, and

nonhuman primate models [35], [36]. This type of inter-

face was bidirectional; it allowed both manipulation and

observation of neural activity. In that work, collaborators

demonstrated a chronic setup that permitted repeated,

daily optogenetic stimulation and large-scale recording
from the same sites in NHP cortex. The setup combined

optogenetics with a transparent artificial dura (AD) and

the high-density microelectrocorticography ð�ECoGÞ
technology described above. The setup incorporated a

192-channel �ECoG array spanning 192 mm2 into the

AD for simultaneous electrophysiological recording dur-

ing optical stimulation (Fig. 3). The array was chronically

implanted over the opsin-expressing areas in M1 and S1
for over two weeks. Optical stimulation was delivered via

a fiber optic placed on the surface of the AD. With this

setup, reliable evoked activity following light stimulation

at several locations was recorded. Similar responses were

recorded across tens of days, however a decline in the

light-evoked signal amplitude was observed during this

period due to the growth of dural tissue over the array.

With regards to generalized CNS interfaces, the spe-

cific goal of any microfabrication is to produce a variety

of implantable node designs which integrate recording

electrodes with structural (e.g., silicon shanks) and active

computational components (i.e., integrated circuits). A
number of approaches have been demonstrated for the

crucial (and often under-reported) interconnect between

recording grids or shanks and active back-ends [37]–[40];

a notable recent effort focused on monolithic integration

of the recording sites with the electronics [41], [42].

Scaling up the number of recording sites for neuronal

interfaces while minimizing the impact on brain function

presents several engineering challenges. In recent work,
we have focused on miniaturizing the probe cable inter-

connects to minimize tethering forces at the probe–brain

interface, allow multiple probes to be implanted in ad-

jacent brain regions, and decrease damage associated

with deep brain implants [43]. We fabricated 32- and

64-channel Parylene C cables ranging in length from 7 to

65 mm for use with next-generation silicon probes

(nanoprobes). To reduce cable width, 10 �m pitch leads
were patterned on two layers sandwiched between three

layers of parylene (overall thickness 15 �m). The compli-

ance of the cables was modeled using Timoshenko beam

bending theory. Reliability was assessed using accelerated

lifetime testing with electrochemical impedance monitor-

ing. These “nanoflex” cables were an order of magnitude

smaller and two orders of magnitude more flexible than

Fig. 3. An implantable �ECoG for use in NHP recordings. Adapted

from [35]. (a) Photograph of transparent ð�ECoGÞ ACF-bonded to

PCB equipped with Zif-Clip compatible Hirose connectors. (b) The

large ð400 �m� 600 �mÞ perforations are designed to allow

viral injections and insertion of electrodes or optical fibers for

intracortical stimulation and recording. (c) �ECoG covering

primary motor (M1) and primary somatosensory (S1) cortices

in NHP.
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existing commercially available devices, a key technology
for making viable long term, high-density neuronal re-

cordings in both superficial and deep brain structures.

Ongoing work led by Chamanzar and Blanche has

focused on monolithic process integration of high density

probes with the polymer interconnect itself [44], [45].

This work focused on the development of high-density

neural probes with integrated parylene interconnects

for distributed neuronal recording and stimulation. It
addressed a long-standing but often overlooked issue

in parylene processing to realize reliable multilayer

interconnects.

The electrode technologies described above are fully

compatible with integrated circuit (IC) technologies and

can be seamlessly combined into a compact assembly, as

will be described in the next section.

B. Development of Active Devices Which Enable
RF Coupling, Front-End Amplification, and
Transcranial Communication

The IC is the core of the neural interface microsys-

tem and is the critical component required to acquire

the neural signals, in some cases stimulate the neurons

to fire, condition the signals and transmit them wire-

lessly out of the body. This IC should be optimized for
both low-power consumption (to minimize the power

transmitted by the reader and prolong its battery life)

and area occupation. Since the IC is active and often a

large rigid component, low area occupation and power

consumption are particularly critical. To keep the im-

plant small, efforts to keep the number of external elec-

trical components low are particularly important and

demanding innovative power conversion techniques to
minimize the use of energy-storage devices. Design tech-

niques in the front-end signal acquisition circuits and in

the wireless subunit are key to miniaturization and

power efficiency.

1) Miniaturization: While flexible, microfabricated

thin-film electrodes enable sensor miniaturization and

compatibility with neural tissue, several factors limit the
extent of miniaturization of the implant electronics.

First, a neural signal recording front-end is required to

acquire and digitize the signals from each electrode. To

record from multiple sites simultaneously without multi-

plexing, one front-end is required per active electrode,

thus the implanted chip may have hundreds of arrayed

data acquisition channels, which dominate the chip area

and power in scaled implementations [40], [46]. Future
electrode arrays with greater number and density of re-

cording sites will only increase the power and area con-

straints placed on these front-ends. Second, implantable

antennas for neural interfaces have been focused on an-

tenna miniaturization in order to minimize tissue scar-

ring and immune response to the implant. However, this

extreme miniaturization has been at the expense of link

power efficiency, which drops sharply as the implant size
is reduced below a few millimeters [47] limiting the

scale at which an implant can receive sufficient power

inside the brain.

2) Front-Ends: Highly scaled neural interfaces with

large numbers of recording sites require large numbers

of neural signal acquisition circuits, making these front-

end circuits the most common limiter of the size and
power dissipation of the implant IC. A large body of

work has been devoted to the efficient realization of

these circuits and particularly to their noise/power trade-

off. Table 1 summarizes the performance of the �ECoG
front-end as compared to state-of-the-art designs from in-

dustry and academic researchers [48]–[54]. Limited

work has been published on ECoG designs, therefore this

work is compared also to EEG front-ends, which have a
similar set of specifications. State-of-the-art noise effi-

ciency is achieved, and together with a reduced power

supply this work achieves the lowest reported PEF [54]

reported, together with three times lower than prior

state of the art [48]. The small area enables the highest

degree of integration achieved to date in low-frequency

high-precision biosignal acquisition with a 64-channel ar-

ray in only 1.6 mm2 of active silicon area and no external
components required.

One efficient option to address the challenges of low-

power low-area neural recording is to exploit the ad-

vances in semiconductor technology and its associated

reduced feature size combined with innovative architec-

tures to obtain state-of-the-art performance, while simul-

taneously reducing area and power [55]. A compact

solution is obtained by using a system architecture tai-
lored to an advanced process that avoids on-chip passives

and takes advantage of high-density logic and aggressive

process voltage scaling to reduce power and area. This

area-efficient neural signal-acquisition system uses a digi-

tally intensive architecture to reduce system area and

enable operation from a 0.5-V supply. The mixed-signal

architecture also digitizes both the low-frequency and

high-frequency components separately, allowing digitiza-
tion of the local field potentials (LFPs) and action poten-

tials (APs) separately.

We further expanded this architecture to high-

performance recording of low-frequency potentials at the

surface of the brain (through ECoG) or at the surface of

the scalp (through EEG) [56], [57]. 1/f noise cancellation

was employed in a high-resolution capacitive feedback

DAC to achieve �V noise levels in only 2.3 �W of power
dissipation. This modified mixed-signal architecture en-

abled a simultaneous > 20� reduction in size and > 3�
reduction in power efficiency over state of the art. A

comparison of the performance is shown in Table 1.

3) Wireless: State-of-the-art work on implantable an-

tennas for neural interfaces has been focused on antenna
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miniaturization in order to minimize tissue scarring and

immune response to the implant. This extreme miniatur-

ization has been at the expense of link power efficiency,

which drops sharply as the implant size is reduced below

a few millimeters [47]. An alternative approach for mini-
aturization utilizes a larger diameter for the loop an-

tenna but fabricates it on a thin, flexible polymer such

that it conforms to the brain surface, keeping the im-

plant rigid components small [58], [59]. Large, rigid

structures implanted in the cortex contribute to cortical

scarring and result in signal degradation over a timescale

of months [60]. Careful modeling of miniaturized im-

plantable antennas showed that extreme miniaturization
of 1-mm diameter and below is impractical for powering

an implant across the skull [47]. To address this limita-

tion, we recognized that a relatively large diameter of

> 5 mm can be utilized if monolithically integrated with

the antenna in the same MEMS process as the elec-

trodes [58], [59]. While this increases the total footprint

of the implant, it remains thin, flexible, and conformal

and therefore does not dramatically increase the inva-
siveness of the implant. To achieve this form factor, we

patterned an antenna onto a polymer thin-film together

with the ECoG electrodes described in Section I. The

nanoscale thickness of the metallization allows the en-

tire structure to be flexible and conformal. A photograph

of the resulting integrated antenna and array is shown

in Fig. 5(b).

Minimizing power storage capacitance is another key

component to miniaturization by eliminating the need

for off-chip passive components. We architected a wire-

less subsystem for the wireless micro-ECoG implant (dis-

cussed in the next section) that utilize electromagnetic
field backscattering to transmit data. Backscattering is a

well-known communication technique in RFID systems;

however, rather than using packet-based communication,

our system aims to be constantly powered and transmit a

continuous stream of data. Architecting the system in

this manner avoids the need for large on-chip power and

data storage. We achieved a 20� reduction in the capaci-

tance requirement enabling simple integration of all ca-
pacitors on-chip, and we eliminated the need for explicit

on-chip memory [56], [57].

While this approach of combining antenna and elec-

trodes onto the same substrate works well for ECoG,

scaling it to the dimensions necessary for the acquisition

of action potentials poses a formidable challenge, espe-

cially if one wants the electrodes to be free-floating and

untethered. To explore the limits on what can be accom-
plished using electromagnetic wireless technologies, a

free-floating wireless active action-potential electrode ar-

ray was developed [61], [62]. The acquisition circuitry

for four active channels was combined with wireless

powering, data communications and antenna into a

0.125-mm2 complementary metal–oxide–semiconductor

(CMOS) integrated circuit (IC); see Fig. 4. The full

TABLE 1 Comparison of Commercial and Research ECoG and EEG Front-Ends [48]–[53], [55]
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system, verified with wirelessly powered in vivo record-

ings, consumes 10.5 �W, and operates at 1-mm range

with 50-mW transmit power. While this realization

served well to demonstrate that free-floating wireless

electrodes were indeed feasible, it also pointed out a ma-

jor dilemma: The tiny ð450 �m� 250 �mÞ antenna

combined with the high loss of electromagnetic propaga-
tion through tissue leads to a truly inefficient solution

with a power efficiency of only 0.02%, which is unpracti-

cal for real system deployment. This inspired the search

for alternative solutions as described later.

II . SYSTEM INTEGRATION

Chronic, high channel count interfaces will require that
the active electronics be fully embedded in recording

sites and/or polymer platforms to which the electrodes

are connected. This also implies that the design of elec-

tronics and electrodes is truly synergistic and has to be

performed in concert with design of the rest of the sys-

tem. In order to realize the vision of fully autonomous

BMI systems, neural implant devices must not only be
effective in their function, but should also meet clinical

constraints such as ease of implantation, longevity,

safety, and small size. Substantial improvements in neu-

ral implant safety, longevity, and form factor are needed

to translate existing multisite neural recording systems

into technology suitable for long-term use in patients.

To this end, we developed the wireless �ECoG device

mentioned earlier (Fig. 5). The system has four main com-
ponents. 1) A microfabricated, submillimeter resolution

ECoG grid for neural recordings manufactured using only

materials that have been approved by the FDA for chronic

implantation; specifically, Parylene-C (a class-IV bioimplan-

table polymer) and platinum. The 10 �m thin Parylene-C

substrate has a Young’s modulus E ¼ 2:75 GPa, and

is comparable in flexibility to 3.5-�m-thin Polyimide

ðE ¼ 7:5 GPaÞ. The grid is sufficiently flexible to conform
to the highly folded cortical surface. 2) An IC capable of

digitizing the voltage present on the electrodes and that

integrates circuitry to receive power and transmit the

recorded signals wirelessly across the skull, removing the

need for percutaneous plugs and cables. 3) An antenna that

is monolithically integrated with the ECoG sensor grid and

is used to couple wireless power and transmit data wire-

lessly across the skull. 4) An external reader that provides
power to the implant and receives backscattered signals

that are decoded into a data stream.

The wireless �ECoG supersedes the current state of

the art on three different aspects. 1) The wireless func-

tionality of this system will enable closure of the surgical

site, greatly reducing the risk of infection and increasing

the stability and longevity of the neural recordings. A

wireless, untethered device will restore patient mobility
and autonomy allowing patients to be continuously

monitored from home and enable a true chronic neural

interface for a multitude of applications such as neuro-

prosthetic control. 2) The use of thin, nonpenetrating

ECoG electrodes combined with integrated and miniatur-

ized electronics in this system will substantially reduce

the amount of scarring and other forms of tissue immune

response, providing stable neural signals for multiple
years. 3) The system uses microfabricate electrodes that

are spatially 400� denser than current state of the art.

These electrodes enable neural signals to be sampled

with a spatial resolution comparable to penetrating elec-

trodes, while increasing the longevity by orders of mag-

nitude. The use of a flexible assembly further allows the

device to conform to the brain surface.

Similar approaches can be used to develop a miniatur-
ized and low-power neuromodulation interface for the

large-scale acquisition of action potentials, while simulta-

neously performing stimulation on a selected number of

channels. In [62] and [63] a 4.8-mm2 64 channel action-

potential neuromodulation IC consuming 417 �W is descri-

bed (Fig. 6). While similar in many aspects to the ECoG

IC described above, it adds two interesting features: 1) it

Fig. 4. Free-floating wireless active action potential acquisition.

Fig. 5. A wireless microelectrocorticography ð�ECoGÞ system.

(a) �ECoG system concept. (b) Photo of microfabricated

components [31], [56], [57], [59]. (c) IC microphotograph.
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supports programmable stimulation on eight selectable

channels, two of which can be stimulated at the same

time; and 2) to reduce the required communication band-
width, a variety of data compression strategies are in-

cluded. While supporting raw data transmission, it is also

possible to transmit only the epochs around firing events,

or only the spike timing. The latter approach reduces the

required communication data rate by a factor of 700.

A. Development of Free-Floating Recording
Technology

For many applications, the ideal interface would be

one which is so small that it effectively “vanishes” inside

the nervous system which it is communicating with.

Recent work by Seo and colleagues has shown that ultra-

sonic energy is an extremely attractive option for power-

ing and communicating with extremely small ( < 1 mm)

implants. A white paper by Seo et al. [64] explored the

fundamental system design tradeoffs and ultimate size,
power, and bandwidth scaling limits of a putative neural

recording system built from low-power CMOS circuitry

coupled with ultrasonic power delivery and backscatter

communication. As an example, a 100-�m scale record-

ing node of so-called neural dust embedded 2 mm into

cortex and powered via an ultrasonic link would exhibit

a best case 7% efficiency power ( j11.6 dB), resulting in
a received power of È500 �W; this is > 107 more than

EM transmission at similar scale (40 pW). The models

used in that study predict that the high efficiency of

ultrasonic transmission and ultralow-power CMOS front-

ends would enable the scaling of the sensing nodes down

to tens of micrometers.

Follow-up work by Seo and colleagues [65] provided

experimental verification that the predicted scaling
effects follow theory: a ð127 mÞ3 implant immersed in

water 3 cm from an ultrasonic transducer coupled with

0.002% power transfer efficiency and 0.04 ppm back-

scatter modulation, resulting in a maximum received

power of È0.5 �W with1 nW of change in backscatter

power with neural activity. The work additionally con-

firmed the power link scaling trends experimentally for

motes ranging in size from È1 mm down to 127 �m.
These initial results open up the possibility of build-

ing recording and stimulation devices of extremely small

size for both central and peripheral nervous interfaces.

III . CONCLUSION

It is an exciting time to develop systems for neural re-

cording and stimulation, both for central and peripheral
nervous system applications. As such, the existing litera-

ture is both extensive and rapidly expanding. This review

has focused on context and recent directions stemming

from work by the authors and collaborators. We believe

our developments will impact both neuroscience and

neurology, revealing fundamental insight about how the

nervous system functions in health and disease. Specifi-

cally, neurotechnology has the potential to provide a
greater understanding of the structure and function of

the complex neural circuits in the brain that facilitate

motor learning and control. This will be paramount for

the development of neurobiologically informed BMIs de-

signed to aid patients suffering from a large variety of

neurological conditions. h
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