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Abstract— Drowsiness monitoring can reduce workplace and
driving accidents. To enable a discreet device for drowsiness
monitoring and detection, this work presents a drowsiness user-
study with an in-ear EEG system, which uses two user-generic,
dry electrode earpieces and a wireless interface for streaming
data. Twenty-one drowsiness trials were recorded across five
human users and drowsiness detection was implemented with
three classifier models: logistic regression, support vector
machine (SVM), and random forest. To estimate drowsiness
detection performance across usage scenarios, these classifiers
were validated with user-specific, leave-one-trial-out, and
leave-one-user-out training. To our knowledge, this is the first
wireless, multi-channel, dry electrode in-ear EEG to be used
for drowsiness monitoring. With user-specific training, a SVM
achieved a detection accuracy of 95.9%. When evaluating
a never-before-seen user, a similar SVM achieved a 94.5%
accuracy, comparable to the best performing state-of-the-art
wet electrode in-ear and scalp EEG systems.

Index Terms— Dry electrodes, ear EEG, user-generic, clas-
sification, neural recording, drowsiness

I. INTRODUCTION
Drowsiness has been linked to a decline in productivity,

response-time, and cognitive performance. When cognition is
impaired, drivers, pilots, security guards, and nuclear facility
personnel are all at increased risk of errors, occupational
accidents, and bodily harm. For instance, fatigued drivers
account for up to 18% of vehicle accidents [1].

To prevent accidents, drowsiness monitoring and detec-
tion systems have been implemented using camera-based
eye tracking, steering trajectory sensors, and physiological
recording devices. Camera-based systems rely on tracking
the percentage of time the eyelids are closed, making them
susceptible to obstructions. Steering trajectory sensors track
steering wheel movement, limiting their use to vehicles and
making them vulnerable to noise from rough roads. User-
centered recording modalities including electrocardiography,
electrooculography, and electroencephalography (EEG) are
becoming increasingly popular since they may be worn
by a user in varying workplace environments. Of these
three sensing paradigms, EEG tends to achieve the highest
drowsiness detection accuracy [2].

EEG is a safe, non-invasive method of monitoring the
brain’s electrical activity from the scalp. In a clinical setting,
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Fig. 1. Envisioned Ear EEG device discreetly recording EEG from inside
the ear canal and performing drowsiness detection for a user.

large electrode arrays are used to monitor neurological
disorders related to epilepsy and sleep with high spatial
resolution. Compact EEG systems are used in ambulatory
research settings to monitor spontaneous and evoked neural
rhythms related to attention and environmental stimuli. Both
types of systems generally require a technician to abrasively
clean the skin and place wet electrodes. This skin preparation
introduces the risk of skin lesions, and the recorded signal
to noise ratio (SNR) degrades as the wet electrodes dry out
[3]. To enable longer recordings, wearable, dry electrode
scalp EEG systems have been developed, but require bulky
headsets [4]. Recently, multi-channel EEG has been recorded
from inside the ear with user-generic, dry electrode earpieces
[5]. While in-ear EEG does not provide the same spatial
covering as scalp EEG, it can discreetly record large-scale
neural signals including alpha and gamma oscillations.

To our knowledge, all in-ear EEG drowsiness detection
systems use low-channel counts and wet electrodes [6][7][8].
To make these systems user-friendly, it is ideal to have a user-
generic, dry electrode system (Fig. 1). To this effect, this
paper presents a wireless, user-generic, dry electrode in-ear
EEG (Ear EEG) drowsiness detection system with accuracy
comparable to state-of-the-art wet electrode systems. As
described in the following sections, earpieces were fabricated
using 3D printing and electroless gold plating and used to
measure drowsiness across multiple users. User data was
processed and drowsiness detection was demonstrated with
three classifiers (logistic regression, support vector machine,
random forest) across three training scenarios. This user
study was approved by UC Berkeley’s Institutional Review
Board (CPHS protocol ID: 2018-09-11395).

II. EXPERIMENTAL OVERVIEW

Twenty-one drowsiness trials were recorded with the Ear
EEG system across five healthy users. To enable both user-
generic and user-specific training, users participated in multi-
ple trials (maximum of five). Each trial was 40 – 50 minutes
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Fig. 2. (a) Experimental setup render. Head-worn WANDmini records and transmits EEG from contralaterally worn earpieces to a base station via
BLE. All captured EEG can be live plotted for the trial overseer while a custom GUI records the test user’s reaction times and Likert items. (b) Sample
spectrogram of single trial’s EEG, reaction times, Likert items. Drowsy event shaded in green.

in length and took place indoors between 8am and 5pm
with daytime lighting. Prior to each trial, users familiarized
themselves with the experiment format and recording set
up. Since behavioral and response-time measures are highly
correlated to fatigue [2], task-based reaction times and user-
reported Likert items were recorded during each trial and
used to assign alert and drowsy labels during post-processing.

Users began each trial non-drowsy and seated in front of a
laptop. Since the goal of each trial was to record drowsiness
onset, users were instructed to play a repetitive game that
measured their reaction time to cues on a graphical user inter-
face (GUI). Every 60 seconds, a user was prompted to press a
random number between 0-9 (Fig. 2a) and their reaction time
was recorded. Every five minutes, the user was prompted to
enter a Likert item according to the Karolinska Sleepiness
Scale (KSS). This scale ranges from 0 = “extremely alert”,
to 10 = “extremely sleepy, fighting to stay awake”. EEG was
recorded with Ear EEG throughout the trial. During initial
tests, it became clear that recording from both ears to capture
signals across the scalp improved the classifier accuracy by
up to 10%. Thus, users wore two user-generic, dry electrode
earpieces (one in each ear) and a compact wireless neural
recording module WANDmini [5].

After each trial, alert and drowsy labels were assigned
based on reaction times and Likert items. Initial drowsy
periods were highlighted anytime a user’s reaction time
exceeded 2.5 seconds. Then to account for momentary dis-
tractions (when a user was alert but not looking at the GUI),
any period that was not accompanied with a drowsy Likert
item was relabeled as alert. Lastly, the starts and ends of
drowsy periods were tuned based off the derivatives of a
user’s reaction times and Likert items. When the derivatives
increased, this marked the onset of a drowsy event. When
the derivatives decreased, this marked the end of a drowsy
event (Fig. 2b). Each trial exhibited at least one drowsy event
lasting more than nine minutes. Thirty-six drowsiness events
were recorded across all 21 trials.

A. Ear EEG System Overview

A user-generic electrode scheme and physical earpiece
design capable of recording across multiple individuals is
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Fig. 3. (a) Earpiece exploded view. (b) User-generic, dry electrode earpiece.
(c) Earpiece fit. Y & C contact the concha cymba and cavity, respectively.
(d) WANDmini Recording Module.

critical for a wearable drowsiness detection platform. Elec-
trode and earpiece designs were derived from [5] to ensure
consistent low electrode-skin impedance (ESI) throughout
the trial duration. The electrode sizes and locations were
selected in order to minimize channel to channel correlation
while maximizing electrode area. Earpieces boast four 60
mm2 canal electrodes and two 4 cm2 electrodes on the ear’s
concha cymba and concha cavity (Fig. 3 a,b,c). A contralat-
eral recording arrangement with two earpieces provides up
to 10 EEG channels with two candidate reference electrodes.
The right concha cymba electrode was used as the reference
electrode while the left was ignored.

To maximize comfort during multi-hour sessions and
further reduce ESI, the earpieces are modified with a soft
skeleton and high-surface area gold plated electrodes. Elec-
trodes were 3D printed with Formlabs tough resin (RS-F2-
TO15-01), sand-blasted, and electroless plated with palla-
dium, copper, and gold [9]. This produced a gold-finished
electrode that is biocompatible, reusable, and solderable, and
thus ideal for integration with existing recording hardware.
The earpiece body was 3D printed with Formlabs flexible
80A resin (RS-F2-FL80-01), improving in/on ear flexibility
and user comfort. The body exhibited 8.9 MPa of tensile
strength and a durometer shore A value of 80, making it
more durable and 20% more compliant than [5]. Across five

10

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 03,2023 at 21:37:43 UTC from IEEE Xplore.  Restrictions apply. 



Post-Processing Feature Extraction and Classi�cation
(user-generic & user-speci�c)

SVM
(RBF kernel)

Train

Band Pass Filter
(0.05 - 50 Hz)

Remove Reaction 
Segments

Reaction Times &
Likert (KSS)

Assign Alert/Drowsy 
Labels

1

2

10
.

Time (s)

..

Ear EEG
(10 channels)

Experimental
Recordings

Feature Scaling 
(according to quantile range)

Temporal & Spectral 
Features

Feature Selection
(analysis of variance)

ValidateRe-reference
(10 channels -> 20 channels)

Labels
Random 

Forest

Data

Logistic 
Regression

Fig. 4. Block diagram outlining Ear EEG experimental recordings, post-processing, feature extraction and classification to estimate alert and drowsy
states. Reaction times and Likert items recorded during the trial are used to assign alert and drowsy labels for classifier training.

users and 30 ESI measurements, in-ear electrodes exhibited
an average ESI of 190 kΩ (at 50 Hz) and phase of 29°.
Acceptable contact was graded by a 20 Hz ESI <1MΩ; 90%
of measurements meet this criterion.

All EEG signals were recorded using a compact neural
recording device (WANDmini) (Fig. 3d) that wirelessly
transmitted in real-time to a bluetooth base station connected
to a laptop. WANDmini’s recording, digitization, and seri-
alization are performed by a custom neuromodulation IC
[10] (NMIC, Cortera Neurotechnologies, Inc.) that has been
extensively used for both intracranial and non-invasive neural
recording. The NMIC has stimulation capabilities and 64
digitizing frontends integrated into a compact footprint. This
study used 10 channels to record EEG and no stimulation.
Relevant electrical specifications are listed in Table I.

B. Drowsiness Feature Extraction and Classification

Post-processing, feature extraction, and classification of
the Ear EEG recordings was carried out to detect alert and
drowsy states (Fig. 4). To take advantage of contralateral
recordings, each in-ear electrode was re-referenced to the left
concha cymba electrode to maximize spatial covering. Both
originally referenced and re-referenced EEG channels were
band pass filtered from 0.05-50Hz in order to target the EEG
frequency bands of interest for drowsiness detection. Namely,
delta (δ, 0.05-4Hz), theta (θ, 4-8Hz), alpha (α, 8-13Hz), beta
(β, 13-30Hz), and gamma (γ, 30-50Hz) [2].

Experimental recordings were divided into 50 second
epochs, which began 10 seconds after a reaction time cue and
ended when the next reaction time cue was provided. This
focused classification on alert and drowsy states by removing
EEG artifacts related to decision-making and motor planning
in response to GUI cues. If a user’s reaction time exceeded

TABLE I
SYSTEM ELECTRICAL SPECIFICATIONS

Maximum Recording Channels 64
Recording Channels Used 10

Input Range 100 mVpp
ADC Resolution 15 bits

ADC Sample Rate 1 kSps
Noise Floor 70nV/

√
Hz

Wireless Data Rate 2 Mbps
Power 46 mW

10 seconds, the epoch was considered “sleep” and discarded
from this alert and drowsy study. Features were calculated
for each 50 second epoch, since maximizing the feature
extraction window size maximized classifier accuracy.

Both temporal and spectral features that appear in EEG-
based classification literature were implemented [2] [7].
Time-domain features included voltage standard deviation
and maximum peak-to-peak voltage amplitude. For fre-
quency characteristics, the power spectral density (PSD) is
calculated using Welch’s method. Spectral features including
maximum PSD, frequency of maximum PSD, and PSD
variance were calculated for each EEG band. Absolute and
relative band powers were also calculated for the following
bands and ratios: δ, θ, α, β, γ, α/β, θ/β, (α + θ)/β, and
(α + θ)/(α + β). The previous epoch features were used
to capture changes between subsequent epochs related to
drowsiness onset. To account for outliers and signal artifacts,
features were scaled by subtracting the median and scaling
according to the interquartile range. During training, analysis
of variance feature selection was used to find the 20 features
that maximize class variation and minimize redundancy.

Binary (alert/drowsy) classification was performed with
three low-complexity classifier models. Logistic regression
was implemented with a stochastic average gradient descent
solver and L1 regularization, which adds a penalty equal to
the absolute value of the magnitude of feature coefficients.
A support vector machine (SVM) was implemented with a
radial basis function (RBF) kernel that utilizes a maximum of
400 support vectors and a regularization parameter, C=1. A
random forest classifier was implemented with 100 trees and
a maximum depth of five. Class probabilities returned from
these models were filtered with a 3-tap Hamming window
FIR filter and thresholded to achieve final binary outputs.

III. RESULTS

Alert and drowsy event detection performance was esti-
mated with three cross validation techniques of varying prac-
ticality: user-specific, leave-one-trial-out, and leave-one-user-
out. Commensurate with the state-of-the-art, each classifier’s
cross validation performance was scored using event-based
sensitivity (correctly classified drowsy events), specificity
(correctly classified alert events), and accuracy (eq 1).

Accuracy =
True Drowsy + True Alert

All Events
(1)
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Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 03,2023 at 21:37:43 UTC from IEEE Xplore.  Restrictions apply. 



To consider a drowsy event correctly detected, classifiers
must detect at least three minutes of consecutive ‘drowsy’
epochs. This threshold makes classification robust to noisy
classifier outputs while ensuring acceptable detection latency.
An average detection latency of 3.25 minutes was achieved
across all training scenarios. Since this is before the user
falls asleep, this latency is acceptable.

User-specific cross validation estimated event detection
accuracy with recordings from individual users. The model
was trained on n-1 trials for a user and tested on their
remaining trial. This process was repeated n times and
the results were averaged to estimate overall drowsiness
detection accuracy. Average user-specific results ranged from
95.2 - 95.9% across all classifier models (Fig. 5).

Leave-one-trial-out cross validation estimated event detec-
tion accuracy with recordings from all users. The model was
trained on 20 trials and tested on the remaining trial. This
process was repeated 21 times. A 93.9 – 95.4% average event
detection accuracy was achieved across models.

Leave-one-user-out cross validation trained the model on
recordings from four users and tested on recordings from
the never-before-seen user. This user-generic process was
repeated five times. Across all classifier models, a 94.5 -
95.0% average event detection accuracy was achieved.

IV. SUMMARY
This work presents dry electrode Ear EEG drowsiness

detection. A discreet, contralateral recording system with
user-generic earpieces was developed and evaluated with
a proof-of-concept drowsiness study (21 trials). Alert and
drowsy state detection was demonstrated across three classi-
fier models. When training a SVM classifier with data from
all users, a binary-state classification accuracy of 95.4% was
achieved. When training a similar SVM model on four users
and testing on the never-before-seen user, an accuracy of
94.5% was achieved. To the best of the authors’ knowledge,
this is the only dry electrode Ear EEG drowsiness detection
platform (Table II). Since data is specific to individual users,
it is difficult to compare accuracy across platforms. On

TABLE II
TABLE COMPARING RECENT IN-EAR/SCALP DROWSINESS DETECTION

[8] [6] [7] [2] This work

# Users 13 23 16 30 5

# Recordings 13 184 16 312 21

Recording length (min) 60-90 20 55-75 30 40-50

In-ear/Scalp In-ear In-ear In-ear Scalp In-ear

single/both ears Single Single Single – Both

Wet/Dry wet wet wet wet dry

# channels 1 2 1 30 10

Epoch size (s) 5s 30s 230s 60s 50s

Models SVM SVM RF SVM SVM

Sensitivity – 91.2% 99.0% 94% 95.0%

Specificity – – 96.0% 92% 96.7%

Accuracy 88.3% 82.9% 98.5%* 93% 95.9%
*For 230s epoch. 95% accuracy achieved for 60s epoch

Random Forest Drowsy Event Detection
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  Sensitivity  Accuracy   Speci�city

Leave-One-User-OutUser-Speci�c Leave-One-Trial-Out

Leave-One-User-OutUser-Speci�c Leave-One-Trial-Out

Leave-One-User-OutUser-Speci�c Leave-One-Trial-Out

94.894.9 95.094.9 95.2 94.695.6 97.5 93.7

94.5 95.0 93.995.4 95.2 95.695.9 95.0 96.7

95.0 97.5 92.495.2 97.5 92.8 93.9 92.9 94.8

Fig. 5. Drowsy-event detection across three classifier models a) logistic
regression, b) support vector machine, c) random forest. For each model,
results are shown for user-specific, leave-one-trial-out, and leave-one-user-
out cross validation. Error bars show minimum and maximum user results.

average, this work performs comparable to or better than
state-of-the-art scalp and in-ear EEG drowsiness detection
systems.
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